A boundary element method (BEM) implementation of the energy domain integral (EDI) methodology for the numerical analysis of three-dimensional fracture problems considering thermal effects is presented in this paper. The EDI is evaluated from a domain representation naturally compatible with the BEM, since stresses, strains, temperatures, and derivatives of displacements and temperatures at internal points can be evaluated using the appropriate boundary integral equations. Special emphasis is put on the selection of the auxiliary function that represents the virtual crack advance in the domain integral. This is found to be a key feature to obtain reliable results at the intersection of the crack front with free surfaces. Several examples are analyzed to demonstrate the efficiency and accuracy of the implementation.

1.
Stress Intensity Factor Handbook
, 1987,
Y.
Murakami
, ed.,
Pergamon Press
, Oxford, UK.
2.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 2000,
The Stress Analysis of Cracks Handbook
,
3rd ed.
,
ASME Press
, New York.
3.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L. C.
, 1984,
Boundary Element Techniques
,
Springer-Verlag
, Berlin.
4.
Aliabadi
,
M. H.
, 1997, “
Boundary Element Formulations in Fracture Mechanics
.”
Appl. Mech. Rev.
0003-6900,
50
, pp.
83
96
.
5.
Raveendra
,
S. T.
, and
Banerjee
,
P. K.
, 1992, “
Boundary Element Analysis of Cracks in Thermally Stressed Planar Structures
,”
Int. J. Solids Struct.
0020-7683,
29
, pp.
2301
2317
.
6.
Mukherjee
,
Y. X.
,
Shah
,
K.
, and
Mukherjee
,
S.
, 1999, “
Thermoelastic Fracture Mechanics with Regularized Hypersingular Boundary Integral Equations
,”
Eng. Anal. Boundary Elem.
0955-7997,
23
, pp.
89
96
.
7.
Prasad
,
N N. V.
.
,
Aliabadi
,
M H.
.
, and
Rooke
,
D P.
.
, 1994, “
The Dual Boundary Element Method for Thermoelastic Crack Problems
,”
Int. J. Fract.
0376-9429,
66
, pp.
255
272
.
8.
dell’Erba
,
D. N.
, and
Aliabadi
,
M. H.
, 2001, “
BEM Analysis of Fracture Problems in Three-Dimensional Thermoelasticity Using J-Integral
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
4609
4630
.
9.
Aliabadi
,
M. H.
, and
Rooke
,
D. P.
, 1992,
Numerical Fracture Mechanics
,
Computational Mechanics Publications
, Southampton, UK.
10.
Kishimoto
,
K.
,
Auki
,
S.
, and
Sakata
,
M.
, 1980, “
On the Path Independent Integral-J
,”
Eng. Fract. Mech.
0013-7944,
13
, pp.
841
850
.
11.
Shih
,
C. F.
,
Moran
,
B.
, and
Nakamura
,
T.
, 1986, “
Energy Release Rate Along a Three-Dimensional Crack Front in a Thermally Stressed Body
,”
Int. J. Fract.
0376-9429,
30
, pp.
79
102
.
12.
Cisilino
,
A. P.
,
Aliabadi
,
M. H.
, and
Otegui
,
J. L.
, 1998, “
Energy Domain Integral Applied to Solve Center and Double-Edge Crack Problems in Three-Dimensions
,”
Theor. Appl. Fract. Mech.
0167-8442,
29
, pp.
181
194
.
13.
Cisilino
,
A. P.
, and
Aliabadi
,
M. H.
, 1999, “
BEM Implementation of the Energy Domain Integral for the Elastoplastic Analysis of 3D Fracture Problems
,”
Int. J. Electron.
0020-7217,
96
, pp.
229
245
.
14.
Cisilino
,
A. P.
, and
Ortiz
,
J. E.
, 2005, “
Three-Dimensional Boundary Element Assessment of Fibre/Matrix Interface Cracks Under Transverse Loading
,”
Comput. Struct.
0045-7949,
83
, pp.
856
869
.
15.
Cisilino
,
A. P.
, and
Ortiz
,
J. E.
, 2005, “
Boundary Element Analysis of Three-Dimensional Mixed-Mode Cracks via the Interaction Integral
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
11
), pp.
935
956
.
16.
Natha
,
R.
, and
Moran
,
B.
, 1993, “
Domain Integrals for Axisymmetric Interface Crack Problems
,”
Int. J. Solids Struct.
0020-7683,
30
(
15
), pp.
2027
2040
.
17.
Saliva
,
R.
,
Vènere
,
M. J.
,
Padra
,
C.
,
Taroco
,
E.
, and
Feijoo
,
R. A.
, 2000, “
Shape Sensitivity Analysis and Energy Release Rate of Planar Cracks Embedded in Three-Dimensional Bodies
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
, pp.
649
664
.
18.
Wilson
,
W. K.
, and
Yu
,
I. W.
, 1979, “
The Use of J-Integral in Thermal Stress Crack Problems
,”
Int. J. Fract.
0376-9429,
15
, pp.
377
387
.
19.
Das
,
B. R.
, 1977, “
Thermal Stress in a Long Cylinder Containing a Penny-Shaped Crack
,”
Int. J. Eng. Sci.
0020-7225,
6
, pp.
497
516
.
You do not currently have access to this content.