Whirling of strings has been studied both theoretically and experimentally for many decades. According to linear theory, a heavy string can exhibit steady-state whirl only at its natural frequencies which form a discrete spectrum. The nonlinear theory, however, suggests that a string can undergo steady whirl at any frequency larger than the fundamental frequency and further that for each frequency between the nth and the (n+1)th eigenvalue, there exist n distinct whirling modes. Quantitative experimental observations on such whirling have never been reported, although anecdotal evidence suggests the possibility of such whirl. In this paper, we examine the whirling of a string with negligible bending stiffness through experiments utilizing a stereo-vision imaging system. It is shown that steady motion exists only when the string whirls at its natural frequencies and that whirling motions for other frequencies exhibit rich dynamics that needs further exploration.

1.
Routh
,
E. J.
, 1905,
The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies
,
6th ed.
,
McMillan and Co.
,
London
, pp.
385
453
.
2.
Carrier
,
G. F.
, 1945, “
On the Non-linear Vibration Problem of the Elastic String
,”
Q. Appl. Math.
0033-569X,
3
, pp.
157
165
.
3.
Harrison
,
H.
, 1948, “
Plane and Circular Motion of a String
,”
J. Acoust. Soc. Am.
0001-4966,
20
, pp.
874
875
.
4.
Oplinger
,
D. W.
, 1960, “
Frequency Response of a Nonlinear Stretched String
,”
J. Acoust. Soc. Am.
0001-4966,
32
, pp.
1529
1538
.
5.
Murthy
,
G. S. S.
, and
Ramakrishna
,
B. S.
, 1965, “
Nonlinear Character of Resonance in Stretched Strings
,”
J. Acoust. Soc. Am.
0001-4966,
38
, pp.
461
471
.
6.
Narasimha
,
R.
, 1968, “
Non-linear Vibration of an Elastic String
,”
J. Sound Vib.
0022-460X,
8
, pp.
134
146
.
7.
Miles
,
J.
, 1984, “
Resonant, Nonplanar Motion of a Stretched String
,”
J. Acoust. Soc. Am.
0001-4966,
75
, pp.
1505
1510
.
8.
O’Reilly
,
O.
, and
Holmes
,
P. J.
, 1992, “
Non-linear, Non-Planar and Non-Periodic Vibrations of a String
,”
J. Sound Vib.
0022-460X,
153
, pp.
413
435
.
9.
Nayfeh
,
S. A.
,
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1995, “
Nonlinear Response of a Taut String to Longitudinal and Transverse End Excitation
,”
J. Vib. Control
1077-5463,
1
, pp.
203
207
.
10.
Tufillaro
,
N. B.
, 1989, “
Nonlinear and Chaotic String Vibrations
,”
Am. J. Phys.
0002-9505,
57
, pp.
408
414
.
11.
Kolodner
,
I. I.
, 1955, “
Heavy Rotating String—A Nonlinear Eigenvalue Problem
,”
Commun. Pure Appl. Math.
0010-3640,
3
, pp.
395
408
.
12.
Caughey
,
T. K.
, 1958, “
Whirling of a Heavy Chain
,”
Proceedings of the 3rd U.S. National Congress of Applied Mechanics
, pp.
101
108
.
13.
Caughey
,
T. K.
, 1969, “
Whirling of a Heavy String Under Constant Axial Tension: A Non-linear Eigenvalue Problem
,”
Int. J. Non-Linear Mech.
0020-7462,
4
, pp.
61
75
.
14.
Coomer
,
J.
,
Lazarus
,
M.
,
Ticker
,
R. W.
,
Kershaw
,
D.
, and
Tegman
,
A.
, 2001, “
A Non-linear Eigenvalue Problem Associated With Inextensible Whirling Strings
,”
J. Sound Vib.
0022-460X,
239
, pp.
969
982
.
15.
Western
,
A. B.
, 1980, “
Demonstration for Observing J0(x) on a Resonant Rotating Vertical Chain
,”
Am. J. Phys.
0002-9505,
48
, pp.
54
56
.
16.
Howell
,
C. T.
, and
Triantafyllou
,
M. S.
, 1993, “
Stable and Unstable Nonlinear Resonant Response of Hanging Chains: Theory and Experiment
,”
Proc. R. Soc. London, Ser. A
1364-5021,
440
, pp.
345
364
.
17.
Love
,
A. E. H.
, 1927,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
Dover Publications
,
New York
, p.
415
.
18.
Antman
,
S. S.
, and
Reeken
,
M.
, 1987, “
The Drawing and Whirling of Strings: Singular Global Multiparameter Bifurcation Problems
,”
SIAM J. Math. Anal.
0036-1410,
18
, pp.
337
365
.
19.
Sobel
,
I. E.
, 1974, “
On Calibrating Computer Controlled Cameras for Perceiving 3D Scenes
,”
Artif. Intell.
0004-3702,
5
, pp.
185
198
.
20.
Bouguet
,
J. Y.
, and
Perona
,
P.
, 1999, “
3D Photography Using Shadows in Dual-Space Geometry
,”
Int. J. Comput. Vis.
0920-5691,
35
, pp.
129
149
.
21.
Helm
,
J. D.
,
McNeil
,
S. R.
, and
Sutton
,
M. A.
, 1996, “
Improved Three-Dimensional Image Correlation for Surface Displacement Measurement
,”
Opt. Eng.
0091-3286,
35
, pp.
1911
1920
.
22.
Tsai
,
R. Y.
, 1986, “
An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision
,”
Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition
, pp.
364
374
.
24.
Woolley
,
D. M.
, 1998, “
Studies on the Eel Sperm Flagellum. 2. Kinematics of Normal Motility
,”
Cell Motil. Cytoskeleton
0886-1544,
39
, pp.
233
245
.
25.
Clark
,
J.
,
Fraser
,
W. B.
,
Rahn
,
C.
, and
Rajamani
,
A.
, 2005, “
Limit-Cycle Oscillations of a Heavy Whirling Cable Subject to Aerodynamic Drag
,”
Proc. R. Soc. London, Ser. A
1364-5021,
461
, pp.
875
893
.
26.
Lemon
,
G.
, and
Fraser
,
W. B.
, 2001, “
Steady-State Bifurcations and Dynamical Stability of a Heavy Whirling Cable Acted on by Aerodynamic Drag
,”
Proc. R. Soc. London, Ser. A
1364-5021,
457
, pp.
1021
1041
.
27.
Zhu
,
F.
, and
Rahn
,
C. D.
, 1998, “
Stability Analysis of a Circularly Towed Cable-Body System
,”
J. Sound Vib.
0022-460X,
217
, pp.
435
452
.
You do not currently have access to this content.