A combined experimental∕analytical work is carried out to elucidate the energy absorption potential of laterally confined bars under monotonically increasing edge displacement. The thickness t and length L of the bar, as well as the wall-to-wall separation distance, h, are systematically varied. Real-time observations show that the deformation of the bar is characterized by progressive buckling and folding, with the fully compacted material exhibiting repetitious cell unit whose wavelength approximately equals four times the bar thickness. The specific crush energy is little sensitive to the thickness of the bar but strongly varies with th, the “volume fraction” of the structure, attaining a maximum when th0.5. The main sources for energy dissipation are simple compression, plate folding and friction between the bar and the constraining walls, the latter of which dominates for Lt>10. The experimental data are found to be well predicted by simple analytic expressions derived from limit plasticity analysis and incompressible material behavior. The simple configuration studied may shed light on the behavior of more complex structures such as honeycombs, foams, and thin-walled tubes, and may serve as a basis for multi-layer design possessing improved crush energy.

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids: Structure and Properties
, 2nd ed.
Cambridge University Press
, Cambridge, UK.
2.
Alghamdi
,
A. A. A.
, 2001, “
Collapsible Impact Energy Absorbers: An Overview
,”
Thin-Walled Struct.
0263-8231,
39
, pp.
189
213
.
3.
Papka
,
S. D.
, and
Kyriakides
,
S.
, 1994, “
In-Plane Compressive Response and Crushing of Honeycomb
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
1499
1532
.
4.
Subhash
,
G.
, and
Liu
,
Q.
, 2004, “
Crushability Maps for Structural Polymeric Foams in Uniaxial Loading Under Rigid Confinement
,”
Exp. Mech.
0014-4851,
44
, pp.
289
294
.
5.
Vural
,
M.
, and
Ravichandran
,
G.
, 2003, “
Dynamic Response and Energy Dissipation Characteristics of Balsa Wood: Experiments and Analysis
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
2147
2170
.
6.
Alexander
,
J. M.
, 1960, “
An Approximate Analysis of the Collapse of Thin Cylindrical Shells Tube Subject to Axial Compressive Forces
,”
J. Mech. Eng. Sci.
0022-2542,
13
, pp.
10
15
.
7.
Abramowitz
,
W.
, and
Jones
,
N.
, 1984, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
0734-743X,
2
, pp.
179
208
.
8.
Bardi
,
F. C.
,
Yun
,
H. D.
, and
Kyriakides
,
S.
, 2003, “
On the Axisymmetric Progressive Crushing of Circular Tubes Under Axial Compression
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3137
3155
.
9.
Reddy
,
T. Y.
, and
Wall
,
R. J.
, 1988, “
Axial Compression of Foam-Filled Thin-Walled Circular Tubes
,”
Int. J. Impact Eng.
0734-743X,
7
, pp.
151
166
.
10.
Reddy
,
T. Y.
, and
Al-Hassan
,
S. T. S.
, 1993, “
Axial Crushing of Wood-Filled Square Metal Tubes
,”
Int. J. Mech. Sci.
0020-7403,
35
, pp.
231
246
.
11.
Seitzbergera
,
M.
,
Rammerstorfera
,
F. G.
,
Gradingerb
,
R.
,
Degischerc
,
H. P.
,
Blaimscheind
,
M.
, and
Walchd
,
C.
, 2000, “
Experimental Studies on the Quasi-Static Axial Crushing of Steel Columns Filled With Aluminum Foam
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4125
4147
.
12.
Singace
,
A. A.
, 2000, “
Collapse Behaviour of Plastic Tubes Filled With Wood Sawdust
,”
Thin-Walled Struct.
0263-8231,
37
, pp.
163
187
.
13.
Dipaolo
,
B. P.
,
Monteiro
,
P. J. M.
, and
Gronsky
,
R.
, 2004, “
Quasi-Static Axial Crush Response of a Thin-Wall, Stainless Steel Box Component
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3707
3733
.
14.
Hosseinipour
,
S. J.
, and
Daneshi
,
G. H.
, 2003, “
Energy Absorption and Mean Crushing Load of Thin-Walled Grooved Tubes Under Axial Compression
,”
Thin-Walled Struct.
0263-8231,
41
, pp.
31
46
.
15.
Reddy
,
T. Y.
, and
Reid
,
S. R.
, 1979, “
Lateral Compression of Tubes and Tube-Systems With Side Constraints
,”
Int. J. Mech. Sci.
0020-7403,
21
, pp.
187
199
.
16.
Shim
,
V. P.-W
, and
Stronge
,
W. J.
, 1986, “
Lateral Crushing in Tightly Packed Arrays of Thin-Walled Metal Tubes
,”
Int. J. Mech. Sci.
0020-7403,
28
, pp.
709
728
.
17.
Chateau
,
X.
, and
Nguyen
,
Q. S.
, 1991, “
Buckling of Elastic Structures in Unilateral Contact With or Without Friction
,”
Eur. J. Mech. A/Solids
0997-7538,
1
, pp.
71
78
.
18.
Chai
,
H.
, 1998, “
The Post-Buckling Behavior of a Bi-Laterally Constrained Column
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1155
1181
.
19.
Holmes
,
P.
,
Domokos
,
G.
,
Schmitt
,
J.
, and
Szeber’enyi
,
I.
, 1999, “
Constrained Euler Buckling: An Interplay of Computation and Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
170
, pp.
175
207
.
20.
Pocueau
,
A.
, and
Roman
,
B.
, 2004, “
Uniqueness of Solutions for Constrained Elastica
,”
Physica D
0167-2789,
192
, pp.
161
186
.
21.
Chai
,
H.
, 2001, “
Contact Buckling and Postbuckling of Thin Rectangular Plates
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
209
230
.
22.
Chai
,
H.
, 2002, “
On the postbuckling Behavior of Bilaterally Constrained Plates
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2911
2926
.
23.
Wierzbicki
,
T.
,
Bhat
,
S. U.
,
Abramowitz
,
W.
, and
Brodkin
,
D.
, 1992, “
Alexander Revised—A Two Folding Elements Model of Progressive Crushing of Tubes
,”
Int. J. Solids Struct.
0020-7683,
29
, pp.
3269
3288
.
You do not currently have access to this content.