Strong single-wall carbon nanotubes (SWNTs) possess very high stiffness and strength. They have potential for use to tailor the material design to reach desired mechanical properties through SWNT nanocomposites. Layer-by-layer (LBL) assembly technique is an effective method to fabricate SWNT/polyelectrolyte nanocomposite films. To determine the relationship between the constituents of the SWNT/polymer nanocomposites made by LBL technique, a method has been developed to extend the recent work by Liu and Chen (Mech. Mater., 35, pp. 69–81, 2003) for the calculation of the effective Young’s modulus. The work by Liu and Chen on the mixture model is evaluated by finite element analysis of nanocomposites with SWNT volume fraction between 0% and 5%. An equivalent length coefficient is introduced and determined from finite element analysis. A formula is presented using this coefficient to determine the effective Young’s modulus. It is identified that the current work can be applied to SWNT loadings between 0% and 5%, while Liu and Chen’s approach is appropriate for relatively high SWNT volume fractions, close to 5%, but is not appropriate for relatively low SWNT volume fractions. The results obtained from this method are used to determine the effective Young’s modulus of SWNT/polyelectrolyte nanocomposite with 4.7% SWNT loading. The material properties are characterized using both nanoindentation and tensile tests. Nanoindentation results indicate that both the in-plane relaxation modulus and the through-thickness relaxation modulus of SWNT nanocomposites are very close to each other, despite the orientation preference of the SWNTs in the nanocomposites. The steady state in-plane Young’s relaxation modulus compares well with the tensile modulus, and measurement results are compared with Young’s modulus determined from the method presented.

1.
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 1998,
Physical Properties of Carbon Nanotubes
,
Imperial College Press
, London.
2.
Yu
,
M. F.
,
Files
,
B. S.
,
Arepalli
,
S.
, and
Ruoff
,
R. S.
, 2000, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
0031-9007,
84
, pp.
5552
5555
.
3.
Odegard
,
G. M.
,
Gates
,
T. S.
, and
Herring
,
H. M.
, 2005, “
Characterization of Viscoelastic Properties of Polymeric Materials through Nanoindentation
,”
Exp. Mech.
0014-4851,
45
(
2
), pp.
130
136
.
4.
Alexandre
,
M.
, and
Dubois
,
P.
, 2000, “
Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials
,”
Mater. Sci. Eng., R.
0927-796X,
28
, pp.
1
63
.
5.
Wang
,
Y.
,
Sun
,
C.
,
Sun
,
X.
,
Hinkley
,
J.
,
Odegard
,
G. M.
, and
Gates
,
T. S.
, 2002, “
Nano-Scale Finite Element Analysis of Polymer Networks
,”
AIAA J.
0001-1452,
1318
, pp.
1
10
.
6.
Yu
,
M. F.
,
Files
,
B. S.
,
Arepalli
,
S.
, and
Ruoff
,
R. S.
, 2000, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
0031-9007,
84
(
24
), pp.
5552
5555
.
7.
Li
,
F.
,
Cheng
,
H. M.
,
Bai
,
S.
,
Su
,
G.
, and
Dresselhaus
,
M. S.
, 2000, “
Tensile Strength of Single-Walled Carbon Nanotubes Directly Measured from their Macroscopic Ropes
,”
Appl. Phys. Lett.
0003-6951,
77
(
20
), pp.
3161
3163
.
8.
Mamedov
,
A. A.
,
Kotov
,
N.
,
Prato
,
M.
, and
Guldi
,
D. M.
, 2002, “
Molecular Design of Strong Single-Wall Carbon Nanotubes/Polyelectrolyte Multiplayer Composites
,”
Nat. Mater.
1476-1122,
1
, pp.
190
194
.
9.
Kotov
,
N. A.
,
Mamedov
,
A. A.
,
Guldi
,
D. M.
,
Tang
,
Z.
,
Prato
,
M.
,
Wicksted
,
J.
, and
Hirsch
,
A.
, 2004,
Dekker Encyclopedia of Nanoscience and Nanotechnology
,
Dekker
, New York, pp.
2607
2613
.
10.
Lau
,
K.
,
Chipara
,
M.
,
Ling
,
H.
, and
Hui
,
D.
, 2004, “
On the Effective Elastic Moduli of Carbon Nanotubes for Nanocomposite Structures
,”
Composites, Part B
1359-8368,
35
, pp.
95
101
.
11.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Nicholson
,
L. M.
, and
Wise
,
K. E.
, 2002, “
Equivalent-Continuum Modeling of Nano-Structured Materials
,”
Compos. Sci. Technol.
0266-3538,
62
(
14
), pp.
1869
1880
.
12.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
, 2003, “
Constitutive Modeling of Nanotube–Reinforced Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1671
1687
.
13.
Valavala
,
P. K.
, and
Odegard
,
G. M.
, 2005, “
Modeling Techniques for Determination of Mechanical Properties of Polymer Nanocomposites
,”
Rev. Adv. Mater. Sci.
1606-5131,
9
, pp.
34
44
.
14.
Christensen
,
R. M.
, 1997, “
Stress Based Yield/Failure Criteria for Fiber Composites
,”
Int. J. Solids Struct.
0020-7683,
34
(
5
), pp.
529
543
.
15.
Christensen
,
R. M.
, 2000, “
Mechanics of Cellular and Other Low-Density Materials
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
93
104
.
16.
Christensen
,
R. M.
, 1996, “
On the Relationship of Minimal Conditions to Low Density Material Microstructures
,”
J. Mech. Phys. Solids
0022-5096,
44
(
12
), pp.
2113
2123
.
17.
Yang
,
C.
,
Huh
,
H.
, and
Hahn
,
T. H.
, 2003, “
Evaluation of Effective Material Properties of Composite Materials Using Special FEM
,”
J. Mater. Process. Technol.
0924-0136,
140
, pp.
185
190
.
18.
Hu
,
N.
,
Wang
,
B.
,
Tan
,
G. W.
,
Yao
,
Z. H.
, and
Yuan
,
W. F.
, 2000, “
Effective Elastic Properties of 2-D Solid With Circular Holes: Numerical Simulation
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
1811
1823
.
19.
Harik
,
V. M.
, 2002, “
Mechanics of Carbon Nanotubes: Applicability of the Continuum-Beam Models
,”
Comput. Mater. Sci.
0927-0256,
24
, pp.
328
342
.
20.
Harik
,
V. M.
, 2001, “
Ranges of Applicability for the Continuum Beam Model in the Mechanics of Carbon Nanotubes and Nanorods
,”
Solid State Commun.
0038-1098,
120
, pp.
331
335
.
21.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
0001-6160,
21
, pp.
571
574
.
22.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
, 2003, “
Fibre Waviness in Nanotube-Reinforced Polymer Composites- I: Modulus Predictions Using Effective Nanotube Properties
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1689
1703
.
23.
Bradshaw
,
R. D.
,
Fisher
,
F. T.
, and
Brinson
,
L. C.
, 2003, “
Fibre Waviness in Nanotube-Reinforced Polymer Composites- II: Modeling via Numerical Approximation of the Dilute Strain Concentration Tensor
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1705
1722
.
24.
Liu
,
Y. J.
, and
Chen
,
X. L.
, 2003, “
Evaluation of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
0167-6636,
35
, pp.
69
81
.
25.
Chen
,
X. L.
, and
Liu
,
Y. J.
, 2003, “
Square Representative Volume Elements for Evaluating the Effective Material Properties of Carbon Nanotube-Based Composites
,”
Mech. Mater.
0167-6636,
29
, pp.
1
11
.
26.
Hammond
,
P. T.
, 2004, “
Form and Function in Multiplayer Assembly: New Applications at the Nanoscale
,”
Nat. Mater.
1476-1122,
16
(
15
), pp.
1271
1293
.
27.
Lui
,
J.
,
Rinzler
,
A. G.
,
Dai
,
H.
,
Hafner
,
J. H.
,
Bradley
,
R. K.
,
Boul
,
P. J.
,
Lu
,
A.
,
Iverson
,
T.
,
Shelimov
,
K.
,
Huffman
,
C. B.
,
Rodriguez-Macias
,
F.
,
Shon
,
Y.-S.
,
Lee
,
T. R.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
, 1998, “
Fullerene Pipes
,”
Science
0036-8075,
280
(
5367
), pp.
1253
1256
.
28.
Decher
,
G.
, 1997, “
Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites
,”
Science
0036-8075,
277
, pp.
1232
1237
.
29.
Lu
,
H.
,
Wang
,
B.
,
Ma
,
J.
,
Huang
,
G.
, and
Viswananthan
,
H.
, 2003, “
Measurement of Creep Compliance of Solid Polymers by Nanoindentation
,”
Mech. Time-Depend. Mater.
1385-2000,
7
, pp.
189
207
.
30.
Lee
,
E. H.
, and
Radok
,
J. R. M.
, 1960, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
0021-8936,
27
, pp.
438
444
.
You do not currently have access to this content.