The fracture behavior of polycrystalline silicon in the presence of atomically sharp cracks is important in the determination of the mechanical reliability of microelectromechanical system (MEMS) components. The mode-I critical stress intensity factor and crack tip displacements in the vicinity of atomically sharp edge cracks in polycrystalline silicon MEMS scale specimens were measured via an in situ atomic force microscopy/digital image correlation method. The effective (macroscopic) mode-I critical stress intensity factor for specimens from different fabrication runs was 1.00±0.1MPam, where 0.1MPam is the standard deviation that was attributed to local cleavage anisotropy and grain boundary effects. The experimental near crack tip displacements were in good agreement with the linearly elastic fracture mechanics solution, which supports K dominance in polysilicon at the scale of a few microns. The mechanical characterization method implemented in this work allowed for direct experimental evidence of incremental (subcritical) crack growth in polycrystalline silicon that occurred with crack increments of 1-2μm. The variation in experimental effective critical stress intensity factors and the incremental crack growth in brittle polysilicon were attributed to local cleavage anisotropy in individual silicon grains where the crack tip resided and whose fracture characteristics controlled the overall fracture process resulting in different local and macroscopic stress intensity factors.

1.
Abdel-Tawab
,
K.
, and
Rodin
,
G. J.
, 1998, “
Fracture Size Effects And Polycrystalline Inhomogeneity
,”
Int. J. Fract.
0376-9429
93
, pp.
247
259
.
2.
Ballarini
,
R.
,
Mullen
,
R. L.
, and
Heuer
,
A. H.
, 1999, “
The Effects of Heterogeneity and Anisotropy on the Size Effect in Cracked Polycrystalline Films
,”
Int. J. Fract.
0376-9429
95
, pp.
19
39
.
3.
Ballarini
,
R.
,
Mullen
,
R. L.
,
Yin
,
Y.
,
Kahn
,
H.
,
Stemmer
,
S.
, and
Heuer
,
A. H.
, 1997,
The Fracture Toughness of Polysilicon Microdevices: A First Report
,”
J. Mater. Res.
0884-2914
12
(
4
), pp.
915
922
.
4.
Kahn
,
H.
,
Ballarini
,
R.
,
Mullen
,
R. L.
, and
Heuer
,
A. H.
, 1999,
Electrostatically Actuated Failure of Microfabricated Polysilicon Fracture Mechanics Specimens
,”
Proc. R. Soc. London, Ser. A
1364-5021
455
, pp.
3807
3823
.
5.
Sharpe
,
W. N.
,
Yuan
,
B.
, and
Edwards
,
R. L.
, 1997, “
Fracture Tests of Polysilicon Film
,”
Mater. Res. Soc. Symp. Proc.
0272-9172
505
, pp.
51
56
.
6.
Tsuchiya
,
T.
,
Sakata
,
J.
, and
Taga
,
Y.
, 1998, “
Tensile Strength and Fracture Toughness of Surface Micromachined Polycrystalline Silicon Thin Films Prepared Under Various Conditions
,”
Mater. Res. Soc. Symp. Proc.
0272-9172
505
, pp.
285
290
.
7.
Kahn
,
H.
,
Tayebi
,
N.
,
Ballarini
,
R.
,
Mullen
,
R. L.
, and
Heuer
,
A. H.
, 2000, “
Fracture Toughness of Polysilicon MEMS Devices
,”
Sens. Actuators, A
0924-4247
82
, pp.
274
280
.
8.
Kahn
,
H.
,
Ballarini
,
R.
, and
Heuer
,
A. H.
, 2001, “
On the Fracture Toughness of Polysilicon MEMS Structures
,”
Mater. Res. Soc. Symp. Proc.
0272-9172
657
, pp.
13
18
.
9.
Keller
,
C.
, 1998,
Microfabricated High Aspect Ratio Silicon Flexures
, MEMS Precision Instruments, El Cerrito, CA, pp.
187
190
.
10.
Chasiotis
,
I.
, and
Knauss
,
W. G.
, 1998, “
Investigation of Thin Film Mechanical Properties by Probe Microscopy
,”
Proc. SPIE
0277-786X
3512
, pp.
66
75
.
11.
Chasiotis
,
I.
, and
Knauss
,
W. G.
, 2002, “
A New Microtensile Tester for the Study of MEMS Materials with the aid of Atomic Force Microscopy
,”
Exp. Mech.
0014-4851
42
(
1
), pp.
51
57
.
12.
Cho
,
S. W.
,
Chasiotis
,
I.
,
Friedman
,
T. A.
, and
Sullivan
,
J.
, 2005, “
Direct Measurements of Young’s Modulus, Poisson’s Ratio and Failure Properties of ta-C MEMS
,”
J. Micromech. Microeng.
0960-1317
15
(
4
), pp.
728
735
.
13.
Chasiotis
,
I.
,
Cho
,
S. W.
,
Jonnalagadda
,
K.
, and
McCarty
,
A.
, 2004, “
Fracture Toughness of Polycrystalline Silicon and Tetrahedral Amorphous Diamond-like Carbon (ta-C) MEMS
,”
Proceedings of the Society for Experimental Mechanics
, X International Congress, Costa Mesa, CA, June 7–10, Society of Experimental Mechanics, Bethel, CT, pp.
37
45
.
14.
Chasiotis
,
I.
, 2004, “
Mechanics of Thin Films and Microdevices
,”
IEEE Trans. Device Mater. Reliab.
1530-4388
4
(
2
), pp.
176
188
.
15.
Lawn
,
B.
, and
Wilshaw
,
R.
, 1975, “
Indentation Fracture: Principles and Applications
,”
J. Mater. Sci.
0022-2461
10
, pp.
1049
1081
.
16.
Chasiotis
,
I.
, and
Knauss
,
W. G.
, 2003, “
The Mechanical Strength of Polysilicon Films: 1. The Influence of Fabrication Governed Surface Conditions
,”
J. Mech. Phys. Solids
0022-5096
51
, pp.
1533
1550
.
17.
Chasiotis
,
I.
, and
Knauss
,
W. G.
, 2003, “
Experimentation at the Micron- and Submicron Scale
,”
Comprehensive Structural Integrity
(Vol. 8, Interfacial and Nanoscale Failure,
W.
Gerberich
and
W.
Yang
, eds.) Elsevier, New York, pp. 58, 66.
18.
Chasiotis
,
I.
, and
Knauss
,
W. G.
, 2000, “
Microtensile Tests with the Aid of Probe Microscopy for the Study of MEMS Materials
,”
Proc. SPIE
0277-786X
4175
, pp.
96
103
.
19.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 2000,
The Stress Analysis of Cracks Handbook
, 3rd ed., ASME Press, New York, pp.
52
53
.
20.
Chen
,
C. P.
, and
Leipold
,
M. H.
, 1980, “
Fracture Toughness of Silicon
,”
Am. Ceram. Soc. Bull.
0002-7812
59
, pp.
469
472
.
21.
Yasutake
,
K.
,
Iwata
,
M.
,
Yoshii
,
K.
,
Umeno
,
M.
, and
Kawabe
,
H.
, 1986, “
Crack Healing and Fracture Strength of Silicon Crystals
,”
J. Mater. Sci.
0022-2461
21
, pp.
2185
2192
.
22.
Ericson
,
F.
,
Johansson
,
S.
, and
Schweitz
,
J. A.
, 1988, “
Hardness and Fracture Toughness of Semiconducting Materials Studied by Indentation and Erosion Techniques
,”
Mater. Sci. Eng., A
0921-5093
105
, pp.
131
141
.
23.
Abdel-Tawab
,
K.
, and
Rodin
,
G. J.
, 1993, “
On the Relevance of Linear Elastic Fracture Mechanics to Ice
,”
Int. J. Fract.
0376-9429
62
, pp.
171
181
.
24.
Umeno
,
Y.
,
Kushima
,
A.
,
Kitamura
,
T.
,
Gumbsch
,
P.
, and
Li
,
J.
, 2005, “
Ab Initio Study of the Surface Properties and Ideal Strength of (100) Silicon Thin Films
,”
Phys. Rev. B
0163-1829
72
, pp.
165431
-1–165431-
7
.
25.
Komai
,
K.
,
Minoshima
,
K.
, and
Inoue
,
S.
, 1998, “
Fracture and Fatigue Behavior of Single Crystal Silicon Microelements and Nanoscopic AFM Damage Evaluation
,”
Microsyst. Technol.
0946-7076
5
, pp.
30
37
.
26.
Xing
,
Y. M.
,
Dai
,
F. L.
, and
Yang
,
W.
, 2003, “
Nano-moiré Method and Nanoscopic Crack Tip Deformation
,”
Comprehensive Structural Integrity
(Vol.
8
, Interfacial and Nanoscale Failure,
W.
Gerberich
and
W.
Yang
, eds.,
Elsevier
,
New York
, p.
401
.
27.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
, 1985, “
Advanced Fracture Mechanics
,” Oxford University Press, New York,
172
180
.
28.
Fang
,
Y.
,
Ravi-Chandar
,
K.
, and
White
,
K. W.
, 2002, “
Influence of Surface Residual Stress State on Crack Path Evolution in Polycrystalline Alumina
,”
J. Am. Ceram. Soc.
0002-7820
85
(
7
), pp.
1783
1787
.
29.
Cho
,
S.
,
Cárdenas-García
,
J. F.
, and
Chasiotis
,
I.
, 2005, “
Nano-Displacement Based Microscopic Hole Method for Determination of Thin Film Properties
,”
Sens. Actuators, A
0924-4247
120
, pp.
163
171
.
30.
Sumino
,
K.
, 1999, “
Deformation Behavior of Silicon
,”
Metall. Mater. Trans. A
1073-5623,
30A
, pp.
1465
1479
.
31.
Ravi-Chandar
,
K.
, and
Knauss
,
W. G.
, 1984, “
An Experimental Investigation into dynamic Fracture: II Microstructural Aspects
,”
Int. J. Fract.
0376-9429
26
, pp.
65
80
.
32.
Lawn
,
B.
, 1994,
Fracture of Brittle Solids
, 2nd ed., Cambridge University Press, Cambridge, England, pp. 94, 198.
33.
Pérez
,
R.
, and
Gumbsch
,
P.
, 2000, “
Directional Anisotropy in the Cleavage Fracture of Silicon
,”
Phys. Rev. Lett.
0031-9007
84
(
23
), pp.
5347
5350
.
34.
Pérez
,
R.
, and
Gumbsch
,
P.
, 2000, “
An ab initio Study of the Cleavage Anisotropy in Silicon
,”
Acta Mater. Metall.
48
(
18–19
), pp.
4517
4530
.
35.
Mecholsky
,
J. J.
, 1994, “
Quantitative Fractographic Analysis of Fracture Origins in Glass
,”
Fractography of Glass
,
R. C.
Bradt
, and
R. E.
Tressler
, eds., Plenum Press, NY, pp.
45
.
36.
Mecholsky
,
J. J.
,
Rice
,
R. W.
, and
Freiman
,
S. W.
, 1974, “
Predictions of Fracture Energy and Flaw Size in Glasses from Mirror Size Measurements
,”
J. Am. Ceram. Soc.
0002-7820
57
(
10
).
37.
Chasiotis
,
I.
, and
Knauss
,
W. G.
, 2003, “
The Mechanical Strength of Polysilicon Films: 2. Size Effects Associated with Elliptical and Circular Perforations
,”
J. Mech. Phys. Solids
0022-5096
51
, pp.
1551
1572
.
You do not currently have access to this content.