The techniques used by Koiter in 1968 to derive a simplified set of linear equilibrium equations for an elastically isotropic circular cylindrical shell in terms of displacements and the associated pointwise error estimate engendered in Love’s uncoupled strain-energy density are here extended to derive analogous simplified equilibrium equations and an error estimate for elastically isotropic cylindrical shells of arbitrary closed cross section.

1.
Koiter
,
W. T.
, 1968, “
Summary of Equations for Modified, Simplest Possible Accurate Linear Theory of Thin Circular Cylindrical Shells
,” Report No. 442, Lab. Tech. Mech., T. H. Delft.
2.
Sanders
,
J. L.
, Jr.
, 1959, “
An Improved First-Approximation Theory for Thin Shells
,” NASA Report No. 24.
3.
Koiter
,
W. T.
, 1960, “
A Consistent First Approximation in the General Theory of Thin Elastic Shells
,” The Theory of Thin Elastic Shells,
Proceedings of the IUTAM Symposium
, Delft, 1959,
W. T.
Koiter
, ed.,
North-Holland
, Amsterdam.
4.
Love
,
A. E. H.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
Dover
, New York, p.
573
.
5.
Flügge
,
W.
, 1973,
Stresses in Shells
,
2nd ed.
,
Springer-Verlag
, New York, p.
215
.
6.
Simmonds
,
J. G.
, 1966, “
A Set of Simple, Accurate Equations for Circular Cylindrical Elastic Shells
,”
Int. J. Solids Struct.
0020-7683
2
, pp.
525
541
.
7.
Donnell
,
L. H.
, 1933, “
Stability of Thin-Walled Tubes Under Torsion
,” NACA TR 479.
8.
Morley
,
L. S. D.
, 1959, “
An Improvement on Donnell’s Approximation for Thin-Walled Circular Cylinders
,”
Q. J. Mech. Appl. Math.
0033-5614
12
, pp.
89
99
.
9.
Mangelsdorf
,
C. P.
, 1973, “
Morley-Koiter Equations for Thin-Walled Circular Cylindrical Shells. Part 1. General Solutions for Symmetrical Shells of Uniform Thickness
,”
J. Appl. Mech.
0021-8936
40
, pp.
961
965
.
10.
Niordson
,
F. I.
, 1985,
Shell Theory
,
North-Holland
, Amsterdam, Chap. 11.
You do not currently have access to this content.