By applying a methodology useful for analysis of complex fluids based on a synergistic combination of experiments, computer simulations, and theoretical investigation, a model was built to investigate the fluid dynamics of granular flows in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. In Part I, the viscoelastic behavior of nearly identical sized glass balls during a collision have been studied experimentally using a modified Newton’s cradle device. Analyzing the results of the measurements, by employing a numerical model based on finite element methods, the viscous damping coefficient was determined for the glass balls. Power law dependence was found for the restitution coefficient on the impact velocity. In order to obtain detailed information about the interparticle interactions in dense granular flows, a simplified model for collisions between particles of a granular material was proposed to be of use in molecular dynamic simulations, discussed in Part II.

1.
White
,
F. M.
, 1974,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
2.
Schlichting
,
H.
, 1979,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
3.
Nedderman
,
R. M.
, 1992,
Statics and Kinematics of Granular Materials
,
Cambridge University Press
,
Cambridge, UK
.
4.
Bridges
,
F. G.
,
Hatzes
,
A.
, and
Lin
,
D. N. C.
, 1984, “
Structure, Stability, and Evolution of Saturn’s Rings
,”
Nature (London)
0028-0836,
309
, pp.
333
335
.
5.
Jaeger
,
H. M.
,
Nagel
,
S. R.
, and
Behringer
,
R. P.
, 1996, “
Granular Solids, Liquids, and Gases
,”
Rev. Mod. Phys.
0034-6861,
68
, pp.
1259
1272
.
6.
Kuwabara
,
G.
, and
Kono
,
K.
, 1987, “
Restitution Coefficient in a Collision Between Two Spheres
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
26
(
8
), pp.
1230
1233
.
7.
Morgado
,
W. A. M.
, and
Oppenheim
,
I.
, 1997, “
Energy Dissipation for Quasielastic Granular Particle Collisions
,”
Phys. Rev. E
1063-651X,
55
, pp.
1940
1945
.
8.
Brilliantov
,
N. V.
,
Spahn
,
F.
,
Hertzsch
,
J.-M.
, and
Poschel
,
T.
, 1996, “
Model for Collisions in Granular Gases
,”
Phys. Rev. E
1063-651X,
53
, pp.
5382
5392
.
9.
Love
,
A. E. H.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
.
10.
Falcon
,
E.
,
Laroche
,
C.
,
Fauve
,
S.
, and
Coste
,
C.
, 1998, “
Behavior of One Inelastic Ball Bouncing Repeatedly off the Ground
,”
Eur. Phys. J. B
1434-6028,
3
, pp.
45
47
.
11.
Gugan
,
D.
, 2000, “
Inelastic Collision and the Hertz Theory of Impact
,”
Am. J. Phys.
0002-9505,
68
(
10
), pp.
920
924
.
12.
Foester
,
S. F.
,
Louge
,
M. Y.
,
Chang
,
H.
, and
Allia
,
K.
, 1994, “
Measurements of the Collision Properties of Small Spheres
,”
Phys. Fluids
1070-6631,
6
(
3
), pp.
1108
1115
.
13.
Findley
,
W. N.
,
Lai
,
J. S.
, and
Onaran
,
K.
, 1989,
Creep and Relaxation of Nonlinear Viscoelastic Materials (With an Introduction to Linear Viscoelasticity)
,
Dover
,
New York
.
14.
Hughes
,
W. F.
,
Gaylord
,
E. H.
, and
Hughes
,
G. W.
, 1964,
Basic Equations of Engineering
,
McGraw-Hill
,
New York
.
15.
Haider
,
A.
, and
Levenspiel
,
O.
, 1989, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
0032-5910,
58
, pp.
63
70
.
16.
Kolsky
,
H.
, 1963,
Stress Waves in Solids
,
Dover
,
New York
.
17.
Billington
,
E. W.
, and
Tate
,
A.
, 1981,
The Physics of Deformation and Flow
,
McGraw-Hill
,
New York
.
18.
Hughes
,
T. J. R.
, 2000,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
,
Mineola, NY
.
19.
Johnson
,
K. L.
, 1987,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
20.
Mase
,
G. E.
, 1970,
Continuum Mechanics
,
McGraw-Hill
,
New York
.
21.
Goldsmith
,
W.
, 2001,
Impact, the Theory and Physical Behaviour of Colliding Solids
,
Dover
,
New York
.
22.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1970,
Theory of Elasticity
,
Pergamon
,
New York
.
23.
Dormand
,
J. R.
, and
Prince
,
P. J.
, 1980, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
0377-0427,
6
, pp.
19
26
.
You do not currently have access to this content.