The mechanism of drag reduction due to spanwise wall oscillation in a turbulent boundary layer is considered. Published measurements and simulation data are analyzed in light of Stokes’ second problem. A kinematic vorticity reorientation hypothesis of drag reduction is first developed. It is shown that spanwise oscillation seeds the near-wall region with oblique and skewed Stokes vorticity waves. They are attached to the wall and gradually align to the freestream direction away from it. The resulting Stokes layer has an attenuated nature compared to its laminar counterpart. The attenuation factor increases in the buffer and viscous sublayer as the wall is approached. The mean velocity profile at the condition of maximum drag reduction is similar to that due to polymer. The final mean state of maximum drag reduction due to turbulence suppression appears to be universal in nature. Finally, it is shown that the proposed kinematic drag reduction hypothesis describes the measurements significantly better than what current direct numerical simulation does.

1.
Proceedings of the International Symposium on Seawater Drag Reduction
,” 22–23 July 1998, Newport, RI,
Naval Undersea Warfare Center
, Newport, RI.
2.
Akhavan
,
R.
,
Jung
,
W. J.
, and
Mangiavacchi
,
N.
, 1993, “
Turbulence control in wall-bounded flows by spanwise oscillations
,” in
Applied Scientific Research, 51 of Advances in Turbulence IV
, edited by
F. T. M
Nieuwstadt
,
Kluwer
, NY, 1993, pp.
299
303
.
3.
Jung
,
W. J.
,
Mangiavacchi
,
N.
, and
Akhavan
,
R.
, 1992, “
Suppression of turbulence in wall-bounded flows by high frequency spanwise oscillations
,”
Phys. Fluids A
0899-8213,
4
, pp.
1605
1607
.
4.
Bradshaw
,
P.
, and
Pontikos
,
N.
1985, “
Measurements in a turbulent boundary layer on an infinite swept wing
,”
J. Fluid Mech.
0022-1120
159
, p.
105
.
5.
Choi
,
K.-S.
,
DeBisschop
,
J.-R.
, and
Clayton
,
B. R.
, 1998, “
Turbulent Boundary-Layer Control by Means of Spanwise-Wall Oscillation
,”
AIAA J.
0001-1452,
36
, pp.
1157
1163
.
6.
Laadhari
,
F.
,
Skandaji
,
L.
, and
Morel
,
R.
, 1994, “
Turbulence reduction in a boundary layer by a local spanwise oscillating surface
,”
Phys. Fluids
1070-6631,
6
, pp.
3218
3220
.
7.
Karniadakis
,
G. E.
, and
Choi
,
K.-S.
2003, “
Mechanisms on Transverse Motions in Turbulent Wall Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
35
, pp.
45
62
.
8.
Dhanak
,
M. R.
, and
Si
,
C.
1999, “
On Reduction of Turbulent Wall Friction through Spanwise Oscillations
,”
J. Fluid Mech.
0022-1120,
383
, pp.
175
195
.
9.
Schlichting
,
H.
,
Boundary-Layer Theory
, 1979, 7th ed.,
McGraw-Hill
, NY.
10.
Choi
,
K.-S.
, 1999, private communication.
11.
Virk
,
P. S.
, 1975, “
Drag Reduction Fundamentals
,”
AIChE J.
0001-1541,
21
, pp.
625
656
.
12.
Ricco
,
P.
, 2004, “
Modification of Near-Wall Turbulence Due to Spanwise Wall Oscillations
,”
J. Turbul.
1468-5248,
5
, pp.
1
18
.
13.
Oldaker
,
D. K.
, and
Tiederman
,
W. G.
, 1977, “
Spatial structure of the viscous sublayer in drag reducing channel flows
,”
Phys. Fluids
0031-9171,
20
, pp.
133
144
.
You do not currently have access to this content.