A turbulence bridging method purported for any filter-width or scale resolution—fully averaged to completely resolved—is developed. The method is given the name partially averaged Navier-Stokes (PANS) method. In PANS, the model filter width (extent of partial averaging) is controlled through two parameters: the unresolved-to-total ratios of kinetic energy (fk) and dissipation (fε). The PANS closure model is derived formally from the Reynolds-averaged Navier-Stokes (RANS) model equations by addressing the following question: if RANS represents the closure for fully averaged statistics, what is the corresponding closure for partially averaged statistics? The PANS equations vary smoothly from RANS equations to Navier-Stokes (direct numerical simulation) equations, depending on the values of the filter-width control parameters. Preliminary results are very encouraging.

1.
Speziale
,
C. G.
, 1996, “
Computing Non-Equilibrium Flows With Time-Dependent RANS and VLES
,” 15th ICNMFD.
2.
Spalart
,
P. R.
, 2000, “
Trends in Turbulence Treatments
,” Fluids 2000, Denver, AIAA Paper No. 2000-2306.
3.
Batten
,
P.
,
Goldberg
,
U.
, and
Chakravarthy
,
S.
, 2002, “
LNS-An Approach Towards Embedded LES
,” AIAA Paper No. 2002-0427.
4.
Khorrami
,
M. R.
,
Singer
,
B.
, and
Berkman
,
M. E.
, 2002, “
Time-Accurate Simulations and Acoustic Analysis of Slat Free Shear Layer
,”
AIAA J.
0001-1452,
40
(
7
), pp.
1284
1291
.
5.
Khorrami
,
M. R.
,
Singer
,
B.
, and
Lockard
,
D.
, 2002, “
Time-Accurate Simulations and Acoustic Analysis of Slat Free Shear Layer: Part 2
,”
AIAA/CEAS Aeroacoustics Conference and Exhibit
, Breckenridge, CO, AIAA Paper No. 2002-2579.
6.
Hedges
,
L. S.
,
Travin
,
A. K.
, and
Spalart
,
P. S.
, 2002, “
Detached-Eddy Simulation Over a Simplified Landing Gear
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
413
423
.
7.
Girimaji
,
S. S.
,
Jeong
,
E.
, and
Srinivasan
,
R.
, 2006, “
PANS Method for Turbulence: Fixed Point Analysis and Comparison With URANS
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
422
429
.
8.
Germano
,
M.
, 1992, “
Turbulence: The Filtering Approach
,”
J. Fluid Mech.
0022-1120,
238
, pp.
325
336
.
9.
Girimaji
,
S. S.
, 2000, “
Pressure-Strain Correlation Modeling of Complex Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
422
, pp.
91
123
.
10.
Schiestel
,
R.
, 1987, “
Multiple Time-Scale Modeling of Turbulent Flows in One-Point Closures
,”
Phys. Fluids
0031-9171,
30
, pp.
722
731
.
11.
Sohankar
,
A.
, and
Davidson
,
L.
, 2000, “
Large Eddy Simulations of Flow Past a Square Cylinder: Comparison of Different Sub-Grid Scale Models
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
39
47
.
12.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J. H.
, 1992, “
A Laser-Doppler Velocimetry Study of the Ensemble-Averaged Characteristics of the Turbulent Wake of a Square Cylinder
,”
J. Fluid Mech.
0022-1120,
304
, pp.
285
319
.
13.
Breuer
,
M. A.
, 1995, “
A Challenging Test Case for Large Eddy Simulation: High-Reynolds Number Circular Cylinder Flow
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
648
654
.
14.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P.
, 1999, “
Detached Eddy Simulations Past a Circular Cylinder
,”
Flow, Turbul. Combust.
1386-6184,
63
, pp.
293
313
.
15.
Cantwell
,
B.
, and
Coles
,
D.
, 1983, “
An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
136
, pp.
321
374
.
16.
Jordan
,
S. A.
, and
Ragab
,
S. A.
, 1994, “
On the Unsteady and Turbulent Characteristics of Three-Dimensional Shear-Driven Cavity Flow
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
439
449
.
17.
Prasad
,
A. K.
, and
Kosef
,
J. R.
, 1989, “
Reynolds Number and End-Wall Effects on a Lid-Driven Cavity Flow
,”
Phys. Fluids
0031-9171,
1
, pp.
208
218
.
You do not currently have access to this content.