An anisotropic two-equation model is developed through a novel technique that involves the representation of the energy spectrum and invariance based scaling. In this approach the effect of rotation is used to modify the energy spectrum, while the influence of swirl is modeled based on scaling laws. The resulting generalized two-equation turbulence model is validated for several benchmark turbulent flows with swirl and curvature.
Issue Section:
Technical Papers
Topics:
Anisotropy,
Flow (Dynamics),
Pipe flow,
Rotation,
Turbulence,
Stress,
Computation,
Swirling flow,
Channel flow
1.
Speziale
, C. G.
, 1991, “Analytical Methods for the Development of Reynolds Stress Closures in Turbulence
,” Annu. Rev. Fluid Mech.
0066-4189, 23
, pp. 107
–157
.2.
Lumley
, J. L.
, 1970, “Toward a Turbulent Constitutive Relation
,” J. Fluid Mech.
0022-1120, 41
, pp. 413
–434
.3.
Speziale
, C. G.
, 1987, “On Nonlinear K−L and K−ε Models of Turbulence
,” J. Fluid Mech.
0022-1120, 178
, pp. 459
–475
.4.
Reynolds
, W. C.
, 1976, “Computation of Turbulent Flows
,” Annu. Rev. Fluid Mech.
0066-4189, 8
, pp. 183
–208
.5.
Hanjalić
, K.
, and Launder
, B. E.
, 1972, “A Reynolds Stress Model of Turbulent and its Application to Thin Shear Flow
,” J. Fluid Mech.
0022-1120, 52
, pp. 609
–638
.6.
Pope
, S. B.
, 1975, “A More General Effective-Viscosity Hypothesis
,” J. Fluid Mech.
0022-1120, 72
, pp. 331
–340
.7.
Thangam
, S.
, Wang
, X.
, and Zhou
, Y.
, 1999, “Development of a Turbulence Model Based on the Energy Spectrum for Flows Involving Rotation
,” Phys. Fluids
1070-6631, 11
, pp. 2225
–2234
.8.
Zeman
, O.
, 1994, “A Note on the Spectra and Decay of Rotating Homogeneous Turbulence
,” Phys. Fluids
1070-6631, 6
, pp. 3221
–3223
.9.
Zhou
, Y.
, 1995, “A Phenomenological Treatment of Rotating Turbulence
,” Phys. Fluids
1070-6631, 7
, pp. 2092
–2094
.10.
Lumley
, J. L.
, 1978, “Computational Modeling of Turbulent Flows
,” Adv. Appl. Mech.
0065-2156, 18
, pp. 123
–176
.11.
Speziale
, C. G.
, Sarkar
, S.
, and Gatski
, T. B.
, 1991, “Modeling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,” J. Fluid Mech.
0022-1120, 227
, pp. 245
–272
.12.
Pope
, S. B.
, 1983, “Consistent Modeling of Scalar in Turbulent Flows
,” Phys. Fluids
0031-9171, 26
(2
), pp. 404
–408
.13.
Gatski
, T. B.
, and Speziale
, C. G.
, 1993, “On Explicit Algebraic Stress Models for Complex Turbulent Flows
,” J. Fluid Mech.
0022-1120, 254
, pp. 59
–78
.14.
Imao
, S.
, and Itoh
, M.
, 1996, “Turbulent Characteristics of the Flow in an Axially Rotating Pipe
,” Int. J. Heat Fluid Flow
0142-727X, 17
, pp. 445
–451
.15.
Kitoh
, O.
, 1991, “Experimental Study of Turbulent Swirling Flow in a Straight Pipe
,” J. Fluid Mech.
0022-1120, 225
, pp. 445
–479
.16.
Yakhot
, V.
, Orszag
, S. A.
, Thangam
, S.
, Gatski
, T. B.
, and Speziale
, C. G.
, 1992, “Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,” Phys. Fluids A
0899-8213, 4
, pp. 1510
–1520
.17.
Ribeiro
, M. M.
, and Whitelaw
, J. H.
, 1980, “Coaxial Jets With and Without Swirl
,” J. Fluid Mech.
0022-1120, 96
, pp. 769
–795
.18.
Sislian
, J. P.
, and Cusworth
, R. A.
, 1986, “Measurements of Mean Velocity and Turbulent Intensities in a Free Isothermal Swirling Jet
,” AIAA J.
0001-1452, 24
, pp. 303
–309
.19.
Murakami
, M.
, and Kikuyama
, K.
, 1989, “Turbulent Flow in Axially Rotating Pipes
,” ASME J. Fluids Eng.
0098-2202, 102
, pp. 97
–103
.20.
Lavan
, Z.
, Nielsen
, H.
, and Fejer
, A. A.
, 1969, “Separation and Flow Reversal in Swirling Flows in Circular Duct
,” Phys. Fluids
0031-9171, 12
, pp. 1747
–1756
.21.
Speziale
, C. G.
, Younis
, B. A.
, and Berger
, S. A.
, 2000, “Analysis and Modeling of Turbulent Flow in an Axially Rotating Pipe
,” J. Fluid Mech.
0022-1120, 407
, pp. 1
–26
.22.
Poroseva
, S. V.
, Kassinos
, C. A.
, Langer
, C. A.
, and Reynolds
, W. C.
, 2002, “Structure-Based Turbulence Model: Application to a Rotating Pipe Flow
,” Phys. Fluids
1070-6631, 14
, pp. 1523
–1532
.23.
Hirai
, S.
, Takagi
, T.
, and Matsumoto
, M.
, 1988, “Predictions of the Laminarization Phenomena in an Axially Rotating Pipe Flow
,” ASME J. Fluids Eng.
0098-2202, 110
, pp. 425
–430
.24.
Younis
, B. A.
, and Gibson
, M. M.
, 1986, “Calculation of Swirling Jet With a Reynolds Stress Closure
,” Phys. Fluids
0031-9171, 29
(1
), pp. 38
–47
.25.
Muck
, K. C.
, Hoffmann
, P. H.
, and Bradshaw
, P.
, 1985, “The Effect of Convex Surface Curvature on Turbulent Boundary Layers
,” J. Fluid Mech.
0022-1120, 161
, pp. 347
–369
.26.
Gillis
, J. C.
, and Johnston
, J. P.
, 1983, “Turbulent Boundary-Layer Flow and Structure on a Convex Wall and its Redevelopment on a Flat Wall
,” J. Fluid Mech.
0022-1120, 135
, pp. 123
–153
.27.
Hoffmann
, P. H.
, Much
, K. C.
, and Bradshaw
, P.
, 1985, “The Effect of Concave Surface Curvature on Turbulent Boundary Layers
,” J. Fluid Mech.
0022-1120, 161
, pp. 371
–403
.28.
Gibson
, M. M.
, Jones
, W. P.
, and Younis
, B. A.
, 1981, “Calculations of Turbulent Boundary Layers on Curved Surfaces
,” Phys. Fluids
0031-9171, 24
, pp. 386
–395
.29.
Irwin
, H. P. A. H.
, and Smith
, P. A.
, 1975, “Prediction of the Effect of Streamline Curvature on Turbulence
,” Phys. Fluids
0031-9171, 18
, pp. 624
–630
.30.
Rodi
, W.
, and Scheuerer
, G.
, 1983, “Calculation of Curved Shear Layers With Two-Equation Turbulence Models
,” Phys. Fluids
0031-9171, 26
(6
), pp. 1422
–1436
.31.
Girimaji
, S. S.
, 1997, “A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Curved Flows
,” Phys. Fluids
1070-6631, 9
, pp. 1067
–1077
.32.
Lilley
, D. G.
, and Rhode
, D. L.
, 1982, “A Computer Code for Swirling Turbulent Axisymmetric Recirculating Flows in Practical Isothermal Combustor Geometries
,” NASA Contractor Report No. 3442.33.
Durbin
, P. A.
, 1993, “A Reynolds Stress Model for Near-Wall Turbulence
,” J. Fluid Mech.
0022-1120, 249
, pp. 465
–498
.34.
Eskinazi
, S.
, and Yeh
, H.
, 1956, “An Investigation of Fully Developed Turbulent Flows in a Curved Channel
,” J. Aeronaut. Sci.
0095-9812, 23
, Jan., pp. 23
–75
.35.
Younis
, B. A.
, Speziale
, C. G.
, and Berger
, S. A.
, 1998, “Accounting for Effects of a System Rotation on the Pressure-Strain Correlation
,” AIAA J.
0001-1452, 36
, pp. 1746
–1748
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.