Abstract

Streamline curvature in the plane of the mean flow is known to exert a proportionately greater effect on the turbulent mixing processes than might be expected from inspection of the conservation equations governing the evolution of the turbulence field. For the case of momentum transport, streamline curvature in the destabilizing sense increases the Reynolds stresses throughout all regions of the flow while the effects of stabilizing curvature are to reduce these parameters relative to their plane flow values. In the limit of strong stabilizing effects, the turbulence activity is suppressed altogether with the mean flow and turbulence parameters asymptoting to their laminar-flow limits. When heat transfer is present, the experimental findings appear to suggest that the rate of heat transfer by the turbulent motions is more sensitive to the effects of curvature than that of momentum transfer. This is equivalent to an increase in the value of the turbulent Prandtl number with increasing stabilizing curvature. The conventional gradient-transport model, with its built-in assumption of constant Prandtl number, cannot reproduce this result. The purpose of the work reported in this paper was to investigate whether the use of alternative, explicit, and nonlinear models for the turbulent scalar fluxes results in the prediction of a more realistic response of the turbulent Prandtl number to stabilizing curvature effects.

1.
Speziale
,
C. G.
, 1983, “
Closure Models for Rotating Two-Dimensional Turbulence
,”
Geophys. Astrophys. Fluid Dyn.
0309-1929,
23
, pp.
69
84
.
2.
Speziale
,
C. G.
, 1985, “
Galilean Invariance of Subgrid Scale Models in the Large-Eddy Simulation of Turbulence
,”
J. Fluid Mech.
0022-1120,
156
, pp.
55
62
.
3.
Speziale
,
C. G.
, 1989, “
Turbulence Modeling in Non-Inertial Frames of Reference
,”
Theor. Comput. Fluid Dyn.
0935-4964,
1
, pp.
3
19
.
4.
Speziale
,
C. G.
, 1987, “
Second-Order Closure Models for Rotating Turbulent Flows
,”
Q. Appl. Math.
0033-569X,
45
, pp.
721
733
.
5.
Younis
,
B. A.
,
Speziale
,
C. G.
, and
Berger
,
S. A.
, 1998, “
Accounting for the Effects of System Rotation on the Pressure-Strain Correlation
,”
AIAA J.
0001-1452,
36
, pp.
1746
1748
.
6.
Speziale
,
C. G.
,
Younis
,
B. A.
, and
Berger
,
S. A.
, 2000, “
Analysis and Modelling of Turbulent Flow in an Axially Rotating Pipe
,”
J. Fluid Mech.
0022-1120,
407
, pp.
1
26
.
7.
Bradshaw
,
P.
, 1973, “
Effects of Streamwise Curvature on Turbulent Flows
,” AGARDograph No. 169.
8.
Rayleigh
,
T. W. S.
, 1917, “
Dynamics of Revolving Fluids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
93A
, pp.
148
154
.
9.
Gibson
,
M. M.
,
Jones
,
W. P.
, and
Younis
,
B. A.
, 1981, “
Calculation of Turbulent Boundary Layers Over Curved Surfaces
,”
Phys. Fluids
0031-9171,
24
, pp.
386
395
.
10.
Simon
,
T. W.
, and
Moffat
,
R. J.
, 1979, “
Heat Transfer Through Turbulent Boundary Layers: The Effects of Introduction of and Recovery From Convex Curvature
,” ASME Winter Annual Meeting, New York, ASME Paper No. 79-WA∕GT-10.
11.
Gibson
,
M. M.
,
Verriopoulos
,
C. A.
, and
Nagano
,
Y.
, 1982, “
Measurements in the Heated Turbulent Boundary Layer on a Mildly Curved Convex Surface
,”
Turbulent Shear Flows
, Vol.
3
,
Springer-Verlag
,
Berlin
, pp.
80
89
.
12.
Nagata
,
M.
, and
Kasagi
,
N.
, 2004, “
Spatio-Temporal Evolution of Coherent Vortices in Wall Turbulence With Streamwise Curvature
,”
J. Turbul.
1468-5248,
5
, pp.
1
26
.
13.
Gibson
,
M. M.
, 1978, “
An Algebraic Stress and Heat-Flux Model for Turbulent Shear Flow With Streamline Curvature
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1609
1617
.
14.
Yoshizawa
,
A.
, 1985, “
Statistical Analysis of the Anisotropy of Scalar Diffusion in Turbulent Shear Flows
,”
Phys. Fluids
0031-9171,
28
, pp.
3226
3231
.
15.
Yoshizawa
,
A.
, 1988, “
Statistical Modelling of Passive-Scalar Diffusion in Turbulent Shear Flows
,”
J. Fluid Mech.
0022-1120,
195
, pp.
541
555
.
16.
Rogers
,
M. M.
,
Mansour
,
N. N.
, and
Reynolds
,
W. C.
, 1989, “
An Algebraic Model for the Turbulent Flux of a Passive Scalar
,”
J. Fluid Mech.
0022-1120,
203
, pp.
77
101
.
17.
Rubinstein
,
R.
, and
Barton
,
J. M.
, 1991, “
Renormalization Group Analysis of Anisotropic Diffusion in Turbulent Shear Flows
,”
Phys. Fluids A
0899-8213,
3
, pp.
415
421
.
18.
Younis
,
B. A.
,
Speziale
,
C. G.
, and
Clark
,
T. T.
, 2005, “
A Non-Linear Algebraic Model for the Turbulent Scalar Fluxes
,”
Proc. R. Soc. London, Ser. A
1364-5021,
461
, pp.
575
594
.
19.
Kaltenbach
,
H.-J.
,
Gerz
,
T.
, and
Schumann
,
U.
, 1994, “
Large-Eddy Simulation of Homogeneous Turbulence and Diffusion in Stably Stratified Shear Flow
,”
J. Fluid Mech.
0022-1120,
280
, pp.
1
40
.
20.
Dakos
,
T.
, and
Gibson
,
M. M.
, 1987, “
On Modelling the Pressure Terms of the Scalar Flux Equations
,”
Turbulent Shear Flows
, Vol.
5
,
L. J. S.
Bradbury
,
F.
Durst
,
B. E.
Launder
,
F. W.
Schmidt
, and
J. H.
Whitelaw
, eds.,
Springer-Verlag
,
Berlin
, pp.
7
18
.
21.
Shih
,
T.-H.
, and
Lumley
,
J. L.
, 1986, “
Influence of Timescale Ratio on Scalar Flux Relaxation: Modelling Sirivat and Warhafts Homogeneous Passive Scalar Fluctuations
,”
J. Fluid Mech.
0022-1120,
162
, pp.
211
222
.
22.
Sirivat
,
A.
, and
Warhaft
,
Z.
, 1983, “
The Effects of a Passive Cross-Stream Temperature Gradient on the Evolution of Temperature Variance and Heat Flux in Grid Turbulence
,”
J. Fluid Mech.
0022-1120,
128
, pp.
323
346
.
23.
Rodi
,
W.
, 1976, “
A New Algebraic Relation for Calculating the Reynolds Stresses
,”
Z. Angew. Math. Mech.
0044-2267,
56
, pp.
219
221
.
24.
Gibson
,
M. M.
, and
Younis
,
B. A.
, 1986, “
Calculation of Swirling Jets With a Reynolds Stress Closure
,”
Phys. Fluids
0031-9171,
29
, pp.
38
48
.
25.
So
,
R. M.
, and
Mellor
,
G. L.
, 1973, “
Experiment on Convex Curvature Effects in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
60
, pp.
43
62
.
26.
Champagne
,
J. H.
,
Harris
,
V. G.
, and
Corrsin
,
S.
, 1970, “
Experiments on Nearly Homogeneous Shear Flow
,”
J. Fluid Mech.
0022-1120,
41
, pp.
81
141
.
27.
Launder
,
B. E.
, 1976, “
Heat and Mass Transport
,”
Topics in Applied Physics
, Vol.
12
,
P.
Bradshaw
, ed.,
Springer-Verlag
,
Berlin
.
28.
Gibson
,
M. M.
, and
Verriopoulos
,
C. A.
, 1984, “
Turbulent Boundary Layer on a Mildly Curved Convex Surface: Part 2, Temperature Field Measurements
,”
Exp. Fluids
0723-4864,
2
, pp.
73
80
.
29.
Girimaji
,
S. S.
, 1997, “
A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Turbulent Curved Flows
,”
Phys. Fluids
1070-6631,
9
, pp.
1067
1077
.
30.
Thangam
,
S.
,
Wang
,
X.-H.
,
Zhou
,
Y.
, 1999, “
Development of a Turbulence Model Based on the Energy Spectrum for Flows Involving Rotation
,”
Phys. Fluids
1070-6631,
11
, pp.
2225
2234
.
31.
Dakos
,
T.
,
Verriopoulos
,
C. A.
, and
Gibson
,
M. M.
, 1984, “
Turbulent Flow With Heat Transfer in Plane and Curved Wall Jets
,”
J. Fluid Mech.
0022-1120,
145
, pp.
339
360
.
You do not currently have access to this content.