Abstract
Previously proposed methods for subgrid-scale (SGS) stress modeling were re-investigated and extended to SGS heat-flux modeling, and various anisotropic and isotropic eddy viscosity/diffusivity models were obtained. On the assumption that they are used in a finite-difference (FD) simulation, the models were constructed in such a way that they are insensitive to numerical parameters on which calculated flows are strongly dependent in the conventional Smagorinsky model. The models obtained, as well as those previously proposed, were evaluated a priori in a stably stratified open channel flow, which is considered to be a challenging application of large eddy simulation and suitable for testing both SGS stress and heat-flux models. The most important feature of the models proposed is that they are insensitive to the discretized test filtering parameter required in the dynamic procedure of Germano et al. (1991, Phys. Fluids, 3, pp. 1760–1765) in FD simulation. We also found in SGS heat-flux modeling that the effect of the grid (resolved)-scale (GS) velocity gradient plays an important role in the estimation of the streamwise heat flux, and an isotropic eddy diffusivity model with the effect of the GS velocity is proposed.