This study concerns the near-wall behavior of the subgrid-scale diffusivity. This is shown to depend on the thermal boundary conditions. Therefore, the constant subgrid-scale Prandtl number hypothesis is questionable and a direct modeling of the subgrid-scale diffusivity is considered instead. Large-eddy simulations are carried out using the Trio U code in a turbulent channel flow configuration with the three classical thermal boundary conditions (constant temperature, constant heat flux, and adiabatic wall). Different dynamic methods are used to model the subgrid-scale diffusivity and results are compared with constant subgrid-scale Prandtl number large-eddy simulations and with direct numerical simulations.

1.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
0027-0644,
91
(
3
), pp.
99
164
.
2.
Deardorff
,
J.
, 1970, “
A Numerical Study of Three-Dimmensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
41
, pp.
453
480
.
3.
Dong
,
Y.-H.
, and
Lu
,
X.-Y.
, 2004, “
Large Eddy Simulation of a Thermally Stratified Turbulent Channel Flow with Temperature Oscillation on the Wall
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2109
2122
.
4.
Lee
,
J. S.
,
Xu
,
W.
, and
Pletcher
,
H.
, 2004, “
Large Eddy Simulation of Heated Vertical Annular Pipe Flow in Fully Developed Turbulent Mixed Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
437
446
.
5.
Wang
,
W.
, and
Pletcher
,
R.
, 1996, “
On the Large Eddy Simulation of a Turbulent Channel Flow with Significant Heat Transfer
,”
Phys. Fluids
1070-6631,
8
(
12
), pp.
3354
3366
.
6.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
, 2000, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
1070-6631,
12
(
7
), pp.
1843
1863
.
7.
Veynante
,
D.
,
Boger
,
M.
,
Knikker
,
R.
,
Legier
,
J.
,
Nottin
,
C.
,
Poinslt
,
T.
, and
Varoquie
,
B.
, 2000, “
Simulations aux Grandes Échelles Pour la Combustion Turbulente
,” La Combustion et sa Modélisation, pp.
21
30
.
8.
Zhou
,
X.
, and
Mahalingam
,
S.
, 2002, “
A Flame Surface Density Based Model for Large Eddy Simulation of Turbulent Nonpremixed Combustion
,”
Phys. Fluids
1070-6631,
14
(
11
), pp.
L77
L80
.
9.
Nakamura
,
S.
, and
Brodkey
,
R. S.
, 2000, “
Direct and Large Eddy Simulation of the Three-Dimensional Unsteady Flows in the Counter-Jet Mixing Vessel
,”
Proceedings of the ASME Fluids Engineering Summer Conference
.
10.
Li
,
C. W.
, and
Wang
,
J. H.
, 2002, “
Large Eddy Simulation of Dispersion in Free Surface Shear Flow
,”
J. Hydraul. Res.
0022-1686,
40
(
3
), pp.
351
358
.
11.
Murata
,
A.
, and
Mochizuki
,
S.
, 2004. “
Large Eddy Simulation of Turbulent Heat Transfer in a Rotating Two-Pass Smooth Square Channel with Sharp 180∘ Turns
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
683
698
.
12.
Murata
,
A.
, and
Mochizuki
,
S.
, 2004, “
Effect of Rib Orientation and Channel Rotation on Turbulent Heat Tranfer in a Two-Pass Square Channel with Sharp 180∘ Turns Investigated by Using Large Eddy Simulation
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2599
2618
.
13.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
, 1991, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
0899-8213,
3
(
11
), pp.
2746
2757
.
14.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
(
7
), pp.
1760
1765
.
15.
Montreuil
,
E.
,
Sagaut
,
E.
, and
Labbé
,
O.
, 1999, “
Assessment of Non-Fickian Subgrid-Scale Models for Passive Scalar in Channel Flow
,” Workshop on Direct and Large Eddy Simulation, Isaac Newton Institute for Mathematical Sciences, May.
16.
Peng
,
S.-H.
, and
Davidson
,
L.
, 2002, “
On a Subgrid-Scale Heat Flux Model for Large-Eddy Simulation of Turbulent Thermal Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1393
1405
.
17.
Pullin
,
D. I.
, 2000, “
A Vortex-Based Model for the Subgrid Flux of a Passive Scalar
,”
Phys. Fluids
1070-6631,
12
(
9
), pp.
2311
2319
.
18.
Bardina
,
J.
,
Ferziger
,
J.
, and
Reynolds
,
W.
, 1980, “
Improved Subgrid Scale Models for Large Eddy Simulation
,”
AIAA J.
0001-1452,
80
, p.
1357
.
19.
Jaberi
,
F. A.
, and
Colucci
,
P. J.
, 2003, “
Large Eddy Simulation of Heat and Mass Transport in Turbulent Flows. Part 2: Scalar Field
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1827
1840
.
20.
Katopodes
,
F. V.
,
Street
,
R. L.
, and
Ferziger
,
J. H.
, 2000, “
Subfilter-Scale Scalar Transport for Large-Eddy Simulation
,”
14th Symposium on Boundary Layers and Turbulence
,
American Meteorological Society
, pp.
472
475
.
21.
Germano
,
M.
, 1992, “
Turbulence: The Filtering Approach
,”
J. Fluid Mech.
0022-1120,
238
, pp.
325
336
.
22.
Nicoud
,
F.
, and
Ducros
,
F.
, 1999, “
Subgrid-Scale Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
1386-6184,
62
(
3
), pp.
183
200
.
23.
Monin
,
A. S.
, and
Yaglom
,
A. M.
, 1975,
Statistical fluid mechanics
,
MIT Press
, Cambridge, MA.
24.
Granville
,
P. S.
, 1990, “
A Near-Wall Eddy Viscosity Formula for Turbulent Boundary Layers in Pressure Gradients Suitable for Momentum, Heat, or Mass Transfer
,”
ASME J. Fluids Eng.
0098-2202,
112
, pp.
240
243
.
25.
Meneveau
,
C.
,
Lund
,
T.
, and
Cabot
,
W.
, 1996, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
0022-1120,
319
, pp.
353
385
.
26.
Dean
,
R. B.
, 1978, “
Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow
,”
ASME J. Fluids Eng.
0098-2202,
41
, pp.
215
223
.
27.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1980,
Convective Heat Transfer
,
McGraw-Hill
, New York.
28.
Jiménez
,
J.
, and
Moin
,
P.
, 1991, “
The Minimal Channel Flow Unit in Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
225
, pp.
213
240
.
29.
Moin
,
P.
, and
Kim
,
J.
, 1982, “
Numerical Investigation of Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
118
, pp.
341
377
.
30.
Chatelain
,
A.
,
Ducros
,
F.
, and
Métais
,
O.
, 2004, “
LES of Turbulent Heat Transfer: Proper Convection Numerical Schemes for Temperature Transport
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
(
9
), pp.
1017
1044
.
31.
Alfredson
,
P. H.
, and
Person
,
H.
, 1989, “
Instabilities in Channel Flow with System Rotation
,”
J. Fluid Mech.
0022-1120,
202
, pp.
543
557
.
32.
Lezius
,
D. K.
, and
Johnson
,
J. P.
, 1976, “
Roll-Cell Instabilities in Rotating Laminar and Turbulent Channel Flows
”,
J. Fluid Mech.
0022-1120,
77
, pp.
153
175
.
33.
Debusschere
,
B.
, and
Rutland
,
C. J.
, 2004, “
Turbulent Scalar Transport Mechanisms in Plane Channel and Couette Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
8-9
), pp.
1771
1781
.
34.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, 1987, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
177
, pp.
133
166
.
35.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow up to Reτ=590
,”
Phys. Fluids
1070-6631,
11
(
4
), pp.
943
945
.
This content is only available via PDF.
You do not currently have access to this content.