Abstract
This study concerns the near-wall behavior of the subgrid-scale diffusivity. This is shown to depend on the thermal boundary conditions. Therefore, the constant subgrid-scale Prandtl number hypothesis is questionable and a direct modeling of the subgrid-scale diffusivity is considered instead. Large-eddy simulations are carried out using the Trio U code in a turbulent channel flow configuration with the three classical thermal boundary conditions (constant temperature, constant heat flux, and adiabatic wall). Different dynamic methods are used to model the subgrid-scale diffusivity and results are compared with constant subgrid-scale Prandtl number large-eddy simulations and with direct numerical simulations.
Issue Section:
Technical
Papers
1.
Smagorinsky
, J.
, 1963, “General Circulation Experiments With the Primitive Equations
,” Mon. Weather Rev.
0027-0644, 91
(3
), pp. 99
–164
.2.
Deardorff
, J.
, 1970, “A Numerical Study of Three-Dimmensional Turbulent Channel Flow at Large Reynolds Numbers
,” J. Fluid Mech.
0022-1120, 41
, pp. 453
–480
.3.
Dong
, Y.-H.
, and Lu
, X.-Y.
, 2004, “Large Eddy Simulation of a Thermally Stratified Turbulent Channel Flow with Temperature Oscillation on the Wall
,” Int. J. Heat Mass Transfer
0017-9310, 47
, pp. 2109
–2122
.4.
Lee
, J. S.
, Xu
, W.
, and Pletcher
, H.
, 2004, “Large Eddy Simulation of Heated Vertical Annular Pipe Flow in Fully Developed Turbulent Mixed Convection
,” Int. J. Heat Mass Transfer
0017-9310, 47
, pp. 437
–446
.5.
Wang
, W.
, and Pletcher
, R.
, 1996, “On the Large Eddy Simulation of a Turbulent Channel Flow with Significant Heat Transfer
,” Phys. Fluids
1070-6631, 8
(12
), pp. 3354
–3366
.6.
Colin
, O.
, Ducros
, F.
, Veynante
, D.
, and Poinsot
, T.
, 2000, “A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,” Phys. Fluids
1070-6631, 12
(7
), pp. 1843
–1863
.7.
Veynante
, D.
, Boger
, M.
, Knikker
, R.
, Legier
, J.
, Nottin
, C.
, Poinslt
, T.
, and Varoquie
, B.
, 2000, “Simulations aux Grandes Échelles Pour la Combustion Turbulente
,” La Combustion et sa Modélisation, pp. 21
–30
.8.
Zhou
, X.
, and Mahalingam
, S.
, 2002, “A Flame Surface Density Based Model for Large Eddy Simulation of Turbulent Nonpremixed Combustion
,” Phys. Fluids
1070-6631, 14
(11
), pp. L77
–L80
.9.
Nakamura
, S.
, and Brodkey
, R. S.
, 2000, “Direct and Large Eddy Simulation of the Three-Dimensional Unsteady Flows in the Counter-Jet Mixing Vessel
,” Proceedings of the ASME Fluids Engineering Summer Conference
.10.
Li
, C. W.
, and Wang
, J. H.
, 2002, “Large Eddy Simulation of Dispersion in Free Surface Shear Flow
,” J. Hydraul. Res.
0022-1686, 40
(3
), pp. 351
–358
.11.
Murata
, A.
, and Mochizuki
, S.
, 2004. “Large Eddy Simulation of Turbulent Heat Transfer in a Rotating Two-Pass Smooth Square Channel with Sharp 180∘ Turns
,” Int. J. Heat Mass Transfer
0017-9310, 47
, pp. 683
–698
.12.
Murata
, A.
, and Mochizuki
, S.
, 2004, “Effect of Rib Orientation and Channel Rotation on Turbulent Heat Tranfer in a Two-Pass Square Channel with Sharp 180∘ Turns Investigated by Using Large Eddy Simulation
,” Int. J. Heat Mass Transfer
0017-9310, 47
, pp. 2599
–2618
.13.
Moin
, P.
, Squires
, K.
, Cabot
, W.
, and Lee
, S.
, 1991, “A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,” Phys. Fluids A
0899-8213, 3
(11
), pp. 2746
–2757
.14.
Germano
, M.
, Piomelli
, U.
, Moin
, P.
, and Cabot
, W.
, 1991, “A Dynamic Subgrid-Scale Eddy Viscosity Model
,” Phys. Fluids A
0899-8213, 3
(7
), pp. 1760
–1765
.15.
Montreuil
, E.
, Sagaut
, E.
, and Labbé
, O.
, 1999, “Assessment of Non-Fickian Subgrid-Scale Models for Passive Scalar in Channel Flow
,” Workshop on Direct and Large Eddy Simulation, Isaac Newton Institute for Mathematical Sciences, May.16.
Peng
, S.-H.
, and Davidson
, L.
, 2002, “On a Subgrid-Scale Heat Flux Model for Large-Eddy Simulation of Turbulent Thermal Flow
,” Int. J. Heat Mass Transfer
0017-9310, 45
, pp. 1393
–1405
.17.
Pullin
, D. I.
, 2000, “A Vortex-Based Model for the Subgrid Flux of a Passive Scalar
,” Phys. Fluids
1070-6631, 12
(9
), pp. 2311
–2319
.18.
Bardina
, J.
, Ferziger
, J.
, and Reynolds
, W.
, 1980, “Improved Subgrid Scale Models for Large Eddy Simulation
,” AIAA J.
0001-1452, 80
, p. 1357
.19.
Jaberi
, F. A.
, and Colucci
, P. J.
, 2003, “Large Eddy Simulation of Heat and Mass Transport in Turbulent Flows. Part 2: Scalar Field
,” Int. J. Heat Mass Transfer
0017-9310, 46
, pp. 1827
–1840
.20.
Katopodes
, F. V.
, Street
, R. L.
, and Ferziger
, J. H.
, 2000, “Subfilter-Scale Scalar Transport for Large-Eddy Simulation
,” 14th Symposium on Boundary Layers and Turbulence
, American Meteorological Society
, pp. 472
–475
.21.
Germano
, M.
, 1992, “Turbulence: The Filtering Approach
,” J. Fluid Mech.
0022-1120, 238
, pp. 325
–336
.22.
Nicoud
, F.
, and Ducros
, F.
, 1999, “Subgrid-Scale Modelling Based on the Square of the Velocity Gradient Tensor
,” Flow, Turbul. Combust.
1386-6184, 62
(3
), pp. 183
–200
.23.
Monin
, A. S.
, and Yaglom
, A. M.
, 1975, Statistical fluid mechanics
, MIT Press
, Cambridge, MA.24.
Granville
, P. S.
, 1990, “A Near-Wall Eddy Viscosity Formula for Turbulent Boundary Layers in Pressure Gradients Suitable for Momentum, Heat, or Mass Transfer
,” ASME J. Fluids Eng.
0098-2202, 112
, pp. 240
–243
.25.
Meneveau
, C.
, Lund
, T.
, and Cabot
, W.
, 1996, “A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,” J. Fluid Mech.
0022-1120, 319
, pp. 353
–385
.26.
Dean
, R. B.
, 1978, “Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow
,” ASME J. Fluids Eng.
0098-2202, 41
, pp. 215
–223
.27.
Kays
, W. M.
, and Crawford
, M. E.
, 1980, Convective Heat Transfer
, McGraw-Hill
, New York.28.
Jiménez
, J.
, and Moin
, P.
, 1991, “The Minimal Channel Flow Unit in Near-Wall Turbulence
,” J. Fluid Mech.
0022-1120, 225
, pp. 213
–240
.29.
Moin
, P.
, and Kim
, J.
, 1982, “Numerical Investigation of Turbulent Channel Flow
,” J. Fluid Mech.
0022-1120, 118
, pp. 341
–377
.30.
Chatelain
, A.
, Ducros
, F.
, and Métais
, O.
, 2004, “LES of Turbulent Heat Transfer: Proper Convection Numerical Schemes for Temperature Transport
,” Int. J. Numer. Methods Fluids
0271-2091, 44
(9
), pp. 1017
–1044
.31.
Alfredson
, P. H.
, and Person
, H.
, 1989, “Instabilities in Channel Flow with System Rotation
,” J. Fluid Mech.
0022-1120, 202
, pp. 543
–557
.32.
Lezius
, D. K.
, and Johnson
, J. P.
, 1976, “Roll-Cell Instabilities in Rotating Laminar and Turbulent Channel Flows
”, J. Fluid Mech.
0022-1120, 77
, pp. 153
–175
.33.
Debusschere
, B.
, and Rutland
, C. J.
, 2004, “Turbulent Scalar Transport Mechanisms in Plane Channel and Couette Flows
,” Int. J. Heat Mass Transfer
0017-9310, 47
(8-9
), pp. 1771
–1781
.34.
Kim
, J.
, Moin
, P.
, and Moser
, R.
, 1987, “Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,” J. Fluid Mech.
0022-1120, 177
, pp. 133
–166
.35.
Moser
, R. D.
, Kim
, J.
, and Mansour
, N. N.
, 1999, “Direct Numerical Simulation of Turbulent Channel Flow up to Reτ=590
,” Phys. Fluids
1070-6631, 11
(4
), pp. 943
–945
.Copyright © 2006
by American
Society of Mechanical Engineers
You do not currently have access to this content.