The authors express the Boussinesq equations of the laminar thermal and natural convection, in the case of permanent and bidimensional flow, in an annular space between two confocal elliptic cylinders. The latter is oriented at an arbitrary angle α with respect to the gravity force, using the elliptic coordinates system. A new calculation code using the finite volumes with the primitive functions (velocity-pressure formulation) is proposed. The Prandtl number is fixed at 0.7 (case of the air) with varying the Rayleigh number. The effect of the system inclination is examined.

1.
Mack
,
L. R.
, and
Bishop
,
E. H.
, 1968, “
Natural Convection Between Horizontal Concentric Cylinders for Low Rayleigh Numbers
,”
Q. J. Mech. Appl. Math.
0033-5614,
XXI
, pp.
223
241
.
2.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
, 1976, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
0022-1120,
74
, pp.
695
719
.
3.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
, 1978, “
An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli
,”
J. Heat Transfer
0022-1481,
100
, pp.
635
640
.
4.
Guj
,
G.
, and
Stella
,
F.
, 1995, “
Natural Convection in Horizontal Eccentric Annuli: Numerical Study
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
89
105
.
5.
Lee
,
J. H.
, and
Lee
,
T. S.
, 1981, “
Natural Convection in the Annuli Between Horizontal Confocal Elliptical Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
24
, pp.
1739
1742
.
6.
Schreiber
,
W. C.
, and
Singh
,
S. N.
, 1985, “
Natural Convection Between Confocal Horizontal Elliptical Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
807
822
.
7.
Elshamy
,
M. M.
,
Ozisik
,
M. N.
, and
Coulter
,
J. P.
, 1990, “
Correlation for Laminar Natural Convection Between Confocal Horizontal Elliptical Cylinders
,”
Numer. Heat Transfer, Part A
1040-7782,
18
, pp.
95
112
.
8.
Chmaissem
,
W.
,
Suh
,
S. J.
, and
Daguenet
,
M.
, 2002, “
Numerical Study of the Boussinesq Model of Natural Convection in an Annular Space: Having a Horizontal Axis Bounded by Circular and Elliptical Isothermal Cylinders
,”
Appl. Therm. Eng.
1359-4311,
22
, pp.
1013
1025
.
9.
Cheng
,
C. H.
, and
Chao
,
C. C.
, 1996, “
Numerical Prediction of the Buoyancy-Driven Flow in the Annulus Between Horizontal Eccentric Elliptical Cylinders
,”
Numer. Heat Transfer, Part A
1040-7782,
30
, pp.
283
303
.
10.
Guj
,
G.
, and
Stella
,
F.
, 1989, “
Vorticity-Velocity Formulation in the Computation of Flows in Multiconnected Domains
,”
Int. J. Opt. Comput.
1047-8507,
9
, pp.
1285
1298
.
11.
Zhu
,
Y. D.
,
Shu
,
C.
,
Qiu
,
J.
, and
Tani
,
J.
, 2004, “
Numerical Simulation of Natural Convection Between Two Elliptical Cylinders using DQ Method
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
797
808
.
12.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw–Hill
, New York.
13.
Nogotov
,
E. F.
, 1978,
Applications of Numerical Heat Transfer
,
McGraw–Hill
, New York.
14.
Saatdjian
,
E.
, 1998,
Phénomènes de Transport et Leurs Résolutions Numériques
, Polytechnica, Paris.
You do not currently have access to this content.