The authors express the Boussinesq equations of the laminar thermal and natural convection, in the case of permanent and bidimensional flow, in an annular space between two confocal elliptic cylinders. The latter is oriented at an arbitrary angle with respect to the gravity force, using the elliptic coordinates system. A new calculation code using the finite volumes with the primitive functions (velocity-pressure formulation) is proposed. The Prandtl number is fixed at 0.7 (case of the air) with varying the Rayleigh number. The effect of the system inclination is examined.
Issue Section:
Technical Papers
1.
Mack
, L. R.
, and Bishop
, E. H.
, 1968, “Natural Convection Between Horizontal Concentric Cylinders for Low Rayleigh Numbers
,” Q. J. Mech. Appl. Math.
0033-5614, XXI
, pp. 223
–241
.2.
Kuehn
, T. H.
, and Goldstein
, R. J.
, 1976, “An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,” J. Fluid Mech.
0022-1120, 74
, pp. 695
–719
.3.
Kuehn
, T. H.
, and Goldstein
, R. J.
, 1978, “An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli
,” J. Heat Transfer
0022-1481, 100
, pp. 635
–640
.4.
Guj
, G.
, and Stella
, F.
, 1995, “Natural Convection in Horizontal Eccentric Annuli: Numerical Study
,” Numer. Heat Transfer, Part A
1040-7782, 27
, pp. 89
–105
.5.
Lee
, J. H.
, and Lee
, T. S.
, 1981, “Natural Convection in the Annuli Between Horizontal Confocal Elliptical Cylinders
,” Int. J. Heat Mass Transfer
0017-9310, 24
, pp. 1739
–1742
.6.
Schreiber
, W. C.
, and Singh
, S. N.
, 1985, “Natural Convection Between Confocal Horizontal Elliptical Cylinders
,” Int. J. Heat Mass Transfer
0017-9310, 28
, pp. 807
–822
.7.
Elshamy
, M. M.
, Ozisik
, M. N.
, and Coulter
, J. P.
, 1990, “Correlation for Laminar Natural Convection Between Confocal Horizontal Elliptical Cylinders
,” Numer. Heat Transfer, Part A
1040-7782, 18
, pp. 95
–112
.8.
Chmaissem
, W.
, Suh
, S. J.
, and Daguenet
, M.
, 2002, “Numerical Study of the Boussinesq Model of Natural Convection in an Annular Space: Having a Horizontal Axis Bounded by Circular and Elliptical Isothermal Cylinders
,” Appl. Therm. Eng.
1359-4311, 22
, pp. 1013
–1025
.9.
Cheng
, C. H.
, and Chao
, C. C.
, 1996, “Numerical Prediction of the Buoyancy-Driven Flow in the Annulus Between Horizontal Eccentric Elliptical Cylinders
,” Numer. Heat Transfer, Part A
1040-7782, 30
, pp. 283
–303
.10.
Guj
, G.
, and Stella
, F.
, 1989, “Vorticity-Velocity Formulation in the Computation of Flows in Multiconnected Domains
,” Int. J. Opt. Comput.
1047-8507, 9
, pp. 1285
–1298
.11.
Zhu
, Y. D.
, Shu
, C.
, Qiu
, J.
, and Tani
, J.
, 2004, “Numerical Simulation of Natural Convection Between Two Elliptical Cylinders using DQ Method
,” Int. J. Heat Mass Transfer
0017-9310, 47
, pp. 797
–808
.12.
Patankar
, S. V.
, 1980, Numerical Heat Transfer and Fluid Flow
, McGraw–Hill
, New York.13.
Nogotov
, E. F.
, 1978, Applications of Numerical Heat Transfer
, McGraw–Hill
, New York.14.
Saatdjian
, E.
, 1998, Phénomènes de Transport et Leurs Résolutions Numériques
, Polytechnica, Paris.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.