In order to optimize oil recuperation, to secure waste storage, CO2 sequestration and describe more precisely many environmental problems in the underground, we need to improve some homogenization methods that calculate petrophysical parameters. In this paper, we discuss the upscaling of fluid transport equations in fractured heterogeneous media consisting of the fractures themselves and a heterogeneous porous matrix. Our goal is to estimate precisely the fluid flow parameters like permeability and fracture/matrix exchange coefficient at large scale. Two approaches are possible. The first approach consists in calculating the large-scale equivalent properties in one upscaling step, starting with a single continuum flow model at the local scale. The second approach is to perform upscaling in two sequential steps: first, calculate the equivalent properties at an intermediate scale called the ”unit scale,” and, second, average the flow equations up to the large scale. We have implemented the two approaches and applied them to randomly distributed fractured systems. The results allowed us to obtain valuable information in terms of sizes of representative elementary volume associated to a given fracture distribution.

1.
Long
,
C. S.
,
Wilson
,
J. S.
, and
Witherspoon
,
P. A.
, 1982, “
Porous Media Equivalents for Networks of Discontinuous Fractures
,”
Water Resour. Res.
0043-1397,
18
, pp.
645
658
.
2.
Le Ravalec
,
M.
,
Noetinger
,
B.
, and
Hu
,
L. Y.
, 2000, “
The FFT Moving Average (FFT-MA) Generator: An Efficient Numerical Method for Generating and Conditioning Gaussian Simulations
,”
Math. Geol.
0882-8121,
23
, pp.
701
723
.
3.
Barenblatt
,
G. I.
,
Zheltov
,
I. P.
, and
Kochina
,
I. N
, 1960, “
Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks
,”
J. Appl. Math.
1110-757X,
24
, pp.
1286
1303
.
4.
Warren
,
J. E.
and
Root
,
P. J.
, 1963, “
The Behavior of Naturally Fractured Reservoirs
,”
SPE J.
0036-1844, pp.
245
255
.
5.
Lough
,
M. F.
, and
Kamath
,
J.
, 1996, “
A New Method to Calculate the Effective Permeability of Grid Blocks Used in the simulation of Naturally Fractured Reservoirs
,”
SPE J.
0036-1844, pp.
493
499
.
6.
Quintard
,
M.
, and
Whitaker
,
S.
, 1996, “
Transport in Chemically and Mechanically Heterogeneous Porous Media I: Theoretical Development of Region-Averaged Equations for Slightly Compressible Single-Phase Flow
,”
Adv. Water Resour.
0309-1708,
19
(
1
), pp.
29
47
.
7.
Nœtinger
,
B
, and
Estébenet
,
T.
, 2000, “
Up-Scaling of Fractured Media Using Continuous Time Random Walks Methods
,”
Transp. Porous Media
0169-3913,
39
, pp.
315
337
.
8.
Bourbiaux
,
B.
,
Cacas
,
M. C.
,
Sarda
,
S.
, and
Sabathier
,
J. C.
, 1997, “
A Fast and Efficient Methodology to Convert Fractured Reservoir Images into a Dual-Porosity Model
,” SPE paper no. 38907, pp.
671
676
.
9.
Kfoury
,
M.
, 2005, “
Changement d'Echelle Séquentiel pour des Milieux Fracturés Hétérogénes
,” Ph.D. thesis,
2162
, Institut National Polytechnique de Toulouse (http://ethesis.inp-toulouse.fr/archive/00000085/http://ethesis.inp-toulouse.fr/archive/00000085/).
10.
Landereau
,
P.
,
Noetinger
,
B.
, and
Quintard
,
M.
, 2001, “
Quasi-Steady Two-Equation Models for Diffusive Transport in Fractured Porous Media: Large-Scale Properties for Densely Fractured Systems
,”
Adv. Water Resour.
0309-1708,
24
(
8
), pp.
863
876
.
11.
Saez
,
A. E.
,
Otero
,
C. J.
, and
Rusinek
,
I.
, 1989, “
The Effective Homogeneous Behavior of Heterogeneous Porous Media
,”
Transp. Porous Media
0169-3913,
4
(
3
), pp.
213
238
.
12.
Bourgeat
,
A.
,
Quintard
,
M.
, and
Whitaker
,
S.
, 1988, “
Eléments de Comparaison entre la Méthode d’homogénéisation et la Prise de Moyenne avec Fermeture
,”
C. R. Acad. Sci. Paris
,
306
(
2
), pp.
463
466
.
13.
Quintard
,
M.
, and
Whitaker
,
S.
, 1987, “
Ecoulements Monophasiques en Milieu Poreux: Effet des Hétérogéneités Locales
,”
J. Mec. Theor. Appl.
0750-7240,
6
, pp.
691
726
.
14.
Cardwell
,
W. T.
, and
Parsons
,
R. L.
, 1942, “
Average Permeabilities of Heterogeneous Oil Sands
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
0096-4778,
160
, pp.
34
42
.
15.
Ababou
,
R.
, 1996, “
Random Porous Media Flow on Large 3-D Grids: Numerics, Performance, and Application to Homogenization
,”
IMA, Mathematics and Applications: Environmental Studies—Mathematical, Computational and Statistical Analysis
, edited by
M. F.
Wheelered
.,
Springer
, New York, Chap. 1, pp.
1
25
.
16.
Renard
,
P.
,
Genty
,
A.
, and
Stauffer
,
F.
, 2001, “
Laboratory Determination of the Full Permeability Tensor
,”
J. Geophys. Res.
0148-0227,
106
, pp.
443
452
.
17.
Kfoury
,
M.
,
Ababou
,
R.
,
Noetinger
,
B.
, and
Quintard
,
M.
, 2004, “
Matrix Fracture Exchange in Fractured Porous Medium: Stochastic Upscaling
,”
C. R. Méchanique
,
332
, pp.
679
686
.
You do not currently have access to this content.