The propagation of longitudinal elastic waves in quasi one-dimensional structure consisting of harmonic oscillators periodically jointed on a slender beam is studied. Sub-frequency locally resonant band gap with highly asymmetric attenuation is observed in both theoretical and experimental results, and both results match well. The stiffness and mass ratios are found analytically as two factors that influence the actual attenuation in the band gap of the locally resonant phononic crystals. The study on the weights of the two factors shows that the stiffness ratio is the key one. Thus, the reason for the mismatch between the regions of the sharp attenuation and the theoretical band gap in the locally resonant phononic crystals is discovered.

1.
Brillouin
,
L.
, 1953,
Wave Propagation in Periodic Structures
,
Dover Publications
, New York, Chap. 1.
2.
Elachi
,
C.
, 1976, ”
Waves in Active and Passive Periodic Structure: A Review
,”
Proc. IEEE
0018-9219,
64
, pp.
1666
1698
.
3.
Roy
,
A. K.
, and
Plunkett
,
R.
, 1986, ”
Wave Attenuation in Periodic Structures
,”
J. Sound Vib.
0022-460X,
104
, pp.
395
410
.
4.
Romeo
,
F.
, and
Luongo
,
A.
, 2003, ”
Vibration Reduction in Piecewise Bi-coupled Periodic Structures
,”
J. Sound Vib.
0022-460X,
268
, pp.
601
615
.
5.
Yong
,
Y.
, and
Lin
,
Y. K.
, 1989, ”
Propagation of Decaying Waves in Periodic and Piecewise Periodic Structures of Finite Length
,”
J. Sound Vib.
0022-460X,
129
, pp.
99
118
.
6.
Mead
,
D. J.
, 1996, ”
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964-1995
,”
J. Sound Vib.
0022-460X,
190
, pp.
495
524
.
7.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
et al.
, 2000, ”
Locally Resonant Sonic Materials
,”
Science
0036-8075,
289
, pp.
1734
1736
.
8.
Martínez-Sala
,
R.
,
Sancho
,
J.
,
Sánchez
,
J. V.
et al.
, 1995, ”
Sound Attenuation by Sculpture
,”
Nature (London)
0028-0836,
378
, p.
241
.
9.
Goffaux
,
C.
, and
Sánchez-Dehesa
,
J.
, 2003, ”
Two-Dimensional Phononic Crystals Studied using a Variational Method: Application to Lattices of Locally Resonant Materials
,”
Phys. Rev. B
0163-1829,
67
, p.
144301
.
10.
Goffaux
,
C.
,
Sánchez-Dehesa
,
J.
,
Yeyati
,
A. L.
et al.
, 2002, ”
Evidence of Fano-like Interference Phenomena in Locally Resonant Materials
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
225502
.
11.
Hirsekorn
,
M.
, 2004, ”
Small-Size Sonic Crystals with Strong Attenuation Bands in the Audible Frequency Range
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
3364
3366
.
12.
Klironomos
,
A. D.
, and
Economou
,
E. N.
, 1998, ”
Elastic Wave Band Gaps and Single Scattering
,”
Solid State Commun.
0038-1098,
105
, pp.
327
332
.
13.
Wang
,
G.
,
Yu
,
D.
,
Wen
,
J.
et al.
, 2004, ”
One-Dimensional Phononic Crystals with Locally Resonant Structures
,”
Phys. Lett. A
0375-9601,
327
, pp.
512
521
.
14.
Wang
,
G.
,
Wen
,
X.
,
Wen
,
J.
et al.
, 2004, ”
Two-Dimensional Locally Resonant Phononic Crystals with Binary Structures
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
154302
.
15.
Wang
,
G.
,
Wen
,
J.
,
Liu
,
Y.
et al.
, 2004, ”
Lumped-Mass Method for the Study of Band Structure in Two-Dimensional Phononic Crystals
,”
Phys. Rev. B
0163-1829,
69
, p.
184302
.
16.
Djafari-Rouhani
,
B.
,
Dobrzynski
,
L.
, and
Duparc
,
O. H.
, 1983, ”
Sagittal Elastic Waves in Infinite and Semi-infinite Superlattices
,”
Phys. Rev. B
0163-1829,
28
, pp.
1711
1720
.
17.
Platts
,
S. B.
,
Movchan
,
N. V.
,
McPhedran
,
R. C.
et al.
, 2003, ”
Transmission and Polarization of Elastic Waves in Irregular Structures
,”
ASME J. Eng. Mater. Technol.
0094-4289,
125
, pp.
2
6
.
18.
Jensen
,
J. S.
, 2003, ”
Phononic Band Gaps and Vibrations in One- and Two-Dimensional Mass-Spring Structures
,”
J. Sound Vib.
0022-460X,
266
, pp.
1053
1078
.
19.
Madelung
,
O.
, 1978,
Introduction to Solid-State Theory
,
Springer-Verlag
, Berlin, Chap. 2.
You do not currently have access to this content.