The propagation of longitudinal elastic waves in quasi one-dimensional structure consisting of harmonic oscillators periodically jointed on a slender beam is studied. Sub-frequency locally resonant band gap with highly asymmetric attenuation is observed in both theoretical and experimental results, and both results match well. The stiffness and mass ratios are found analytically as two factors that influence the actual attenuation in the band gap of the locally resonant phononic crystals. The study on the weights of the two factors shows that the stiffness ratio is the key one. Thus, the reason for the mismatch between the regions of the sharp attenuation and the theoretical band gap in the locally resonant phononic crystals is discovered.
Issue Section:
Technical Briefs
1.
Brillouin
, L.
, 1953, Wave Propagation in Periodic Structures
, Dover Publications
, New York, Chap. 1.2.
Elachi
, C.
, 1976, ”Waves in Active and Passive Periodic Structure: A Review
,” Proc. IEEE
0018-9219, 64
, pp. 1666
–1698
.3.
Roy
, A. K.
, and Plunkett
, R.
, 1986, ”Wave Attenuation in Periodic Structures
,” J. Sound Vib.
0022-460X, 104
, pp. 395
–410
.4.
Romeo
, F.
, and Luongo
, A.
, 2003, ”Vibration Reduction in Piecewise Bi-coupled Periodic Structures
,” J. Sound Vib.
0022-460X, 268
, pp. 601
–615
.5.
Yong
, Y.
, and Lin
, Y. K.
, 1989, ”Propagation of Decaying Waves in Periodic and Piecewise Periodic Structures of Finite Length
,” J. Sound Vib.
0022-460X, 129
, pp. 99
–118
.6.
Mead
, D. J.
, 1996, ”Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964-1995
,” J. Sound Vib.
0022-460X, 190
, pp. 495
–524
.7.
Liu
, Z.
, Zhang
, X.
, Mao
, Y.
et al., 2000, ”Locally Resonant Sonic Materials
,” Science
0036-8075, 289
, pp. 1734
–1736
.8.
Martínez-Sala
, R.
, Sancho
, J.
, Sánchez
, J. V.
et al., 1995, ”Sound Attenuation by Sculpture
,” Nature (London)
0028-0836, 378
, p. 241
.9.
Goffaux
, C.
, and Sánchez-Dehesa
, J.
, 2003, ”Two-Dimensional Phononic Crystals Studied using a Variational Method: Application to Lattices of Locally Resonant Materials
,” Phys. Rev. B
0163-1829, 67
, p. 144301
.10.
Goffaux
, C.
, Sánchez-Dehesa
, J.
, Yeyati
, A. L.
et al., 2002, ”Evidence of Fano-like Interference Phenomena in Locally Resonant Materials
,” Phys. Rev. Lett.
0031-9007, 88
, p. 225502
.11.
Hirsekorn
, M.
, 2004, ”Small-Size Sonic Crystals with Strong Attenuation Bands in the Audible Frequency Range
,” Appl. Phys. Lett.
0003-6951, 84
, pp. 3364
–3366
.12.
Klironomos
, A. D.
, and Economou
, E. N.
, 1998, ”Elastic Wave Band Gaps and Single Scattering
,” Solid State Commun.
0038-1098, 105
, pp. 327
–332
.13.
Wang
, G.
, Yu
, D.
, Wen
, J.
et al., 2004, ”One-Dimensional Phononic Crystals with Locally Resonant Structures
,” Phys. Lett. A
0375-9601, 327
, pp. 512
–521
.14.
Wang
, G.
, Wen
, X.
, Wen
, J.
et al., 2004, ”Two-Dimensional Locally Resonant Phononic Crystals with Binary Structures
,” Phys. Rev. Lett.
0031-9007, 93
, p. 154302
.15.
Wang
, G.
, Wen
, J.
, Liu
, Y.
et al., 2004, ”Lumped-Mass Method for the Study of Band Structure in Two-Dimensional Phononic Crystals
,” Phys. Rev. B
0163-1829, 69
, p. 184302
.16.
Djafari-Rouhani
, B.
, Dobrzynski
, L.
, and Duparc
, O. H.
, 1983, ”Sagittal Elastic Waves in Infinite and Semi-infinite Superlattices
,” Phys. Rev. B
0163-1829, 28
, pp. 1711
–1720
.17.
Platts
, S. B.
, Movchan
, N. V.
, McPhedran
, R. C.
et al., 2003, ”Transmission and Polarization of Elastic Waves in Irregular Structures
,” ASME J. Eng. Mater. Technol.
0094-4289, 125
, pp. 2
–6
.18.
Jensen
, J. S.
, 2003, ”Phononic Band Gaps and Vibrations in One- and Two-Dimensional Mass-Spring Structures
,” J. Sound Vib.
0022-460X, 266
, pp. 1053
–1078
.19.
Madelung
, O.
, 1978, Introduction to Solid-State Theory
, Springer-Verlag
, Berlin, Chap. 2.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.