The effective compliance moduli of a plate with a doubly periodic set of traction-free holes are considered. Attention is drawn to the perturbation form in which they are expressed by applying the complex variable methods in two-dimensional elasticity. This permits one to derive specific dimensionless combinations of the effective moduli, which are independent of the solid Poisson ratio. Using them saves computations of the structure moduli by FEM-like methods and helps one to evaluate their practical accuracy. Thus far, the only result of this kind has been observed numerically by Day, Snyder, Garboczi, and Thorpe (J. Mech. Phys. Solids. 40, pp. 1031–1051, 1992) and later proved by Cherkaev, Lurie, and Milton (Proc. R. Soc. London, Ser. A 458, pp. 519–529, 1992).

1.
Muskhelishvili
,
N. I.
, 1975,
Some Basic Problems of the Mathematical Theory of Elasticity
,
2nd ed.
,
Noordhoff
, Leiden, The Netherlands.
2.
Vigdergauz
,
S.
, 1999, “
Complete Elasticity Solution to the Stress Problem in a Planar Grained Structure
,”
Math. Mech. Solids
1081-2865
4
, pp.
407
441
.
3.
Abramowtz
,
M.
, and
Stegun
,
I.
, eds., 1965,
Handbook of Mathematical Functions
,
Dover
, New York.
4.
Milton
,
G. W.
, 2002,
The Theory of Composites
,
Cambridge University Press
, Cambridge, UK.
5.
Day
,
A. R.
,
Snyder
,
K. A.
,
Garboczi
,
E. J.
, and
Thorpe
,
M. F.
, 1992, “
The Elastic Moduli of Sheets Containing Circular Holes
J. Mech. Phys. Solids
0022-5096
40
, pp.
1031
1051
.
6.
Cherkaev
,
A. V.
,
Lurie
,
K. A.
, and
Milton
,
G. W.
, 1992, “
Invariant Properties of the Stress in Plane Elasticity and Equivalent Classes of Comnposites
,”
Proc. R. Soc. London, Ser. A
1364-5021
458
, pp.
519
529
.
7.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1999,
Cellular Solids: Structure and Properties
,
2nd ed.
,
Cambridge University Press
, Cambridge, UK.
8.
Eichen
,
J. W.
, and
Torquato
,
S.
, 1993, “
Determining Elastic Behavior of Composites by the Boundary Element Method
,”
J. Appl. Phys.
0021-8979
74
, pp.
159
170
.
9.
Vigdergauz
,
S.
, 2001, “
The Effective Properties of a Perforated Elastic Plate. Numerical Optimization by Genetic Algorithm
,”
Int. J. Solids Struct.
0020-7683
38
, pp.
8593
8616
.
10.
Vigdergauz
,
S.
, 1974, “
On the Plane Problem of the Theory of Elasticity for Multiply-Connected Domains with Cyclic Symmetry
,”
J. Appl. Math. Mech.
0021-8928
38
, pp.
937
941
.
11.
Wang
,
J.
,
Crouch
,
S. L.
, and
Mogilevskaya
,
S. G.
, 2003, “
A Complex Boundary Integral Method for Multiple Circular Holes in an Infinite Plane
,”
Eng. Anal. Boundary Elem.
0955-7997
27
, pp.
789
802
.
12.
Berggren
,
S. A.
,
Lukkassen
,
D.
,
Meidell
,
A.
, and
Simula
,
L.
, 2003, “
Some Methods for Calculating Stiffness Properties of Periodic Structures
,”
Appl. Math.
48
, pp.
97
110
.
13.
Berggren
,
S. A.
,
Lukkassen
,
D.
,
Meidell
,
A.
, and
Simula
,
L.
, 2001, “
On Stiffness Properties of Square Honeycombs and Other Unidirectional Properties
”,
Composites, Part B
1359-8368
32
, pp.
503
511
.
14.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
, 1987, “
A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981
24
, pp.
337
357
.
15.
Jasiuk
,
I.
, 1995, “
Cavities vis-a-vis rigid inclusions: elastic moduli with polygonal inclusions
,”
Int. J. Solids Struct.
0020-7683
32
, pp.
407
422
.
You do not currently have access to this content.