The pth moment Lyapunov exponent of an n-dimensional linear stochastic system is the principal eigenvalue of a second-order partial differential eigenvalue problem, which can be established using the theory of stochastic dynamical system. An analytical-numerical approach for the determination of the pth moment Lyapunov exponents, for all values of p, is presented. The approach is illustrated through a two-dimensional system under bounded noise or real noise parametric excitation. Series expansions of the eigenfunctions using orthogonal functions are employed to transform the partial differential eigenvalue problems to linear algebraic eigenvalue problems, which are then solved numerically. The numerical values obtained are compared with approximate analytical results with weak noise amplitudes.

1.
Oseledec
,
Y. I.
, 1968, “
A Multiplicative Ergodic Theorem. Lyapunov Characteristic Number for Dynamical Systems
,”
Trans. Mosc. Math. Soc.
0077-1554,
19
, pp.
197
231
.
2.
Arnold
,
L.
,
Doyle
,
M. M.
, and
Sri Namachchivaya
,
N.
, 1997, “
Small Noise Expansion of Moment Lyapunov Exponents for Two-Dimensional Systems
,”
Dyn. Stab. Syst.
0268-1110,
12
(
3
), pp.
187
211
.
3.
Khasminskii
,
R. Z.
, and
Moshchuk
,
N.
, 1998, “
Moment Lyapunov Exponent and Stability Index for Linear Conservative System With Small Random Perturbation
,”
SIAM J. Appl. Math.
0036-1399,
58
(
1
), pp.
245
256
.
4.
Sri Namachchivaya
,
N.
, and
Vedula
,
L.
, 2000, “
Stabilization of Linear Systems by Noise: Application to Flow Induced Oscillations
,”
Dyn. Stab. Syst.
0268-1110,
15
(
2
), pp.
185
208
.
5.
Sri Namachchivaya
,
N.
, and
Van Roessel
,
H. J.
, 2001, “
Moment Lyapunov Exponent and Stochastic Stability of Two Coupled Oscillators Driven by Real Noise
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
68
(
6
), pp.
903
914
.
6.
Xie
,
W.-C.
, 2001, “
Moment Lyapunov Exponents of a Two-Dimensional System Under Real Noise Excitation
,”
J. Sound Vib.
0022-460X,
239
(
1
), pp.
139
155
.
7.
Xie
,
W.-C.
, 2003, “
Moment Lyapunov Exponents of a Two-Dimensional System Under Bounded Noise Parametric Excitation
,”
J. Sound Vib.
0022-460X,
263
(
3
), pp.
593
616
.
8.
Milstein
,
G. N.
, 2002, “
The Asymptotic Behavior of Semi-Invariants for Linear Stochastic Systems
,”
Stochastics Dyn.
0219-4937,
2
(
2
), pp.
281
294
.
9.
Wolf
,
A.
,
Swift
,
J.
,
Swinney
,
H.
, and
Vastano
,
A.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
10.
Xie
,
W.-C.
, 2001, “
Lyapunov Exponents and Moment Lyapunov Exponents of a Two-Dimensional Near-Nilpotent System
,”
ASME J. Appl. Mech.
0021-8936,
68
(
3
), pp.
453
461
.
11.
Khasminskii
,
R. Z.
, 1967, “
Necessary and Sufficient Conditions for the Asymptotic Stability of Linear Stochastic Systems
,”
Theor. Probab. Appl.
0040-585X,
12
, pp.
144
147
(English translation).
12.
Arnold
,
L.
,
Oeljeklaus
,
E.
, and
Pardoux
,
E.
, 1986, “
Almost Sure and Moment Stability for Linear Itô Equations
,”
Lyapunov Exponents, Proceedings of a Workshop, Bremen, Germany, 1984, Lecture Notes in Mathematics
,
1186
,
Springer
Verlag, Berlinpp,
85
125
.
13.
Arnold
,
L.
,
Kliemann
,
W.
, and
Oeljeklaus
,
E.
, 1986, “
Lyapunov Exponents of Linear Stochastic Systems
,”
Lyapunov Exponents, Proceedings of a Workshop, Bremen, Germany, 1984, Lecture Notes in Mathematics
,
1186
,
Springer
, Verlag Berlin, pp.
129
159
.
14.
Stratonovich
,
R. L.
, 1967,
Topics in the Theory of Random Noise
, Vol.
II
.
Gordon and Breach
, New York.
15.
Lin
,
Y. K.
, and
Cai
,
G. Q.
, 1995,
Probabilistic Structural Dynamics: Advanced Theory and Applications
,
McGraw–Hill
, New York.
16.
Ariaratnam
,
S. T.
, 1996, “
Stochastic Stability of Viscoelastic Systems Under Bounded Noise Excitation
,”
IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics
,
Kluwer
, Dordrecht, pp.
11
18
.
17.
Wedig
,
W.
, 1988, “
Lyapunov Exponent of Stochastic Systems and Related Bifurcation Problems
,”
Stochastic Structural Dynamics—Progress in Theory and Applications
,
Elsevier
, London, pp.
315
327
.
18.
Tolstov
,
G. P.
, 1962,
Fourier Series
(English translation),
Prentice–Hall
, Englewood Cliffs, NJ.
19.
Lebedev
,
N. N.
, 1972,
Special Functions and Their Applications
(English translation),
Dover
, New York.
20.
Wedig
,
W.
, 1995,
Probabilistic Methods in Applied Physics
,
Springer
, Berlin, pp.
120
148
.
You do not currently have access to this content.