Transient cavitation of a homogeneous gas-liquid mixture flow is modeled for an elastic pipeline by using the classical conservation equations of each phase, which are, later on, written in dimensionless form. The later is resolved by a second order finite difference scheme for which a flux corrective transport algorithm is added as an additional step, in order to accomplish a suitable treatment of the shock problem. The flow gives rise to a localized vapor+gas cavity for which time and space expansion is calculated from the corresponding compatibility relation, continuity equation and ideal gas law. Also, effect of the degassing phenomenon, on this cavity and on the dynamic parameters, is reproduced from a macroscopic bubble growth model. Obtained results are discussed and compared with ones given by experimental data.

1.
Bergant
,
A.
, and
Simpson
,
A. R.
, 1999, “
Pipeline Column Separation Flow Regimes
,”
J. Hydraul. Eng.
0733-9429 ASCE, pp.
835
848
.
2.
Streeter
,
V. L.
, 1972, “
Water Hammer Analysis
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
0044-796X,
95
(
6
), pp.
1959
1972
.
3.
Wylie
,
E. B.
, and
Streeter
,
V. L.
, 1993,
Fluid Transients in Systems
,
Prentice-Hall
, Englewood Cliffs, NJ.
4.
Bergant
,
A.
, and
Simpson
,
A. R.
, 1994, “
Estimated Unsteady Friction in Transient Cavitating Pipe Flow
,”
Water Pipeline Systems
,
D. S.
Miller
, ed.,
Mechanical Engineering
, London, pp.
3
16
.
5.
Streeter
,
V. L.
, 1983, “
Transient Cavitating Pipe Flow
,”
J. Hydraul. Eng.
0733-9429 ASCE,
109
(
11
), pp.
1408
1423
.
6.
Bergant
,
A.
, and
Simpson
,
A. R.
, 1993, “
Interfacial Model for Transient Cavitating Flow in Pipeline
,” in
Unsteady Flow and Fluid Transient
,
R.
Bettess
and
J.
Watts
, eds.,
Balkema
, Rotterdam, pp.
333
342
.
7.
Provoost
,
G. A.
, and
Wylie
,
E. B.
, 1981, “
Discrete Gas Model to Represent Distributed Free Gas in Liquids
,”
Proc. Fifth Int. Symp. on Column Separation, International Association of Hydraulic Research
, Delft, The Netherlands, pp.
249
258
.
8.
Barbero
,
G.
, and
Caponi
,
C.
, 1992, “
Experimental Validation of a Discrete Free Gas Model for Numerical Simulation of Hydraulic Transients With Cavitation
,” in
Hydraulic Transients with Water Column Separation
,
Fluid Mechanics Group
, pp.
51
67
.
9.
Lee
,
T. S.
, 1999, “
Air Influence on Hydraulic Transients on Fluid System With Air Valves
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
646
650
.
10.
Shu
,
J. J.
, 2003, “
Modeling Vaporous Cavitation on Fluid Transients
,”
Int. J. Pressure Vessels Piping
0308-0161, pp.
1
9
.
11.
Kessal
,
M.
, and
Amaouche
,
M.
, 2001, “
Numerical Simulation of Vaporous and Gaseous Cavitation in Pipelines
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
34
, pp.
121
137
.
12.
Kranenburg
,
C.
, 1974, “
Gas Release During Transient Cavitation in Pipes
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
0044-796X,
100
(
10
), pp.
1383
1398
.
13.
Wiggert
,
D. C.
, and
Sundquist
,
M. J.
, 1979, “
The Effects of Gaseous Cavitation on Fluid Transients
,”
ASME J. Fluids Eng.
0098-2202,
101
, pp.
79
86
.
14.
Courant
,
R.
, and
Hilbert
,
D.
, 1962,
Methods of Mathematical Physics
,
Interscience
, New York, Vol.
2
.
15.
Lerat
,
A.
, and
Peret
,
R.
, 1973, “
Sur le Choix des Schémas aux Différences du Second Ordre Fournissant des Profils de Choc sans Oscillations
,”
C. R. Acad. de Sci. Paris
,
277
.
16.
Kwak
,
O. Y.
, and
Kim
,
Y. W.
, 1998, “
Homogeneous Nucleation and Macroscopic Growth of Gas Bubble in Organic Solutions
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
4,5
), pp.
757
767
.
17.
Kessal
,
M.
, 1987, “
Modèlisation, en Écoulement Homogène, des Phénomènes de Cavitation lors des Régimes Transitoires en Conduite
,” thèse de Doctorat d’Ingénieur, INSA de Lyon, France.
18.
Fletcher
,
C. A. J.
, 1997,
Computational Techniques for Fluid Dynamics
, 3rd ed.,
Springer
, Berlin.
You do not currently have access to this content.