Shell-like structures are viewed as fully three-dimensional solid bodies that allow the imposition of restrictions on the transverse variation of displacement vector components in certain regions. An important practical problem is to select a simplified mathematical model for a particular application so that the simplifications do not affect the data of interest significantly. This involves application of expert knowledge aided by virtual and∕or physical experimentation. An example is presented.

1.
Corum
,
J. M.
,
Bolt
,
S. E.
,
Greenstreet
,
W. L.
, and
Gwaltney
,
R. C.
, 1972, “
Theoretical and Experimental Stress Analysis of ORNL Thin-Shell Cylinder-to-Cylinder Model No. 1
,” Tech. Report ORNL 4553, Oak Ridge National Laboratory, Oct.
2.
Gwaltney
,
R. C.
,
Corum
,
J. M.
,
Bolt
,
S. E.
, and
Bryson
,
J. W.
, 1976, “
Experimental Stress Analysis of Cylinder-to-Cylinder Shell Models and Comparisons With Theoretical Predictions
,”
ASME J. Pressure Vessel Technol.
0094-9930,
98
, pp.
283
289
.
3.
Muntges
,
D.
, 2004, “
Validation of Working Models for Thin Cylindrical Shells
,” M.S. thesis, Washington University, The Henry Edwin Sever Graduate School, St. Louis.
4.
Oberkampf
,
W.
, 2001, “
What are Validation Experiments
?”
Exp. Tech.
0732-8818, pp.
35
40
.
5.
Actis
,
R.
,
Szabó
,
B.
, and
Schwab
,
C.
, 1999, “
Hierarchic Models for Laminated Plates and Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
172
, pp.
79
107
.
6.
Babuška
,
I.
,
Szabó
,
B. A.
, and
Actis
,
R. L.
, 1992, “
Hierarchic Models for Laminated Composites
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
, pp.
503
535
.
7.
Naghdi
,
P. M.
, 1972, “
The Theory of Shells and Plates
,”
Encyclopedia of Physics
,
S.
Flügge
, ed.
Springer-Verlag
, Berlin, pp.
425
640
.
8.
Novozhilov
,
V. V.
, 1964,
Thin Shell Theory
,
2nd Edition
,
Noordhoff
, Groningen.
9.
Szabó
,
B.
, and
Babuška
,
I.
, 1991,
Finite Element Analysis
,
Wiley
, New York.
10.
Rank
,
E.
,
Düster
,
A.
,
Nübel
,
V.
,
Preusch
,
K.
, and
Bruhns
,
O. T.
, 2005, “
High Order Finite Elements for Shells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
194
, pp.
2494
2512
.
11.
Szabó
,
B.
, and
Actis
,
R.
, 2005, “
On the Importance and Uses of Feedback Information in FEA
,”
Appl. Numer. Math.
0168-9274,
52
, pp.
219
234
.
12.
Szabó
,
B.
,
Düster
,
A.
, and
Rank
,
E.
, 2004, “
The p -Version of the Finite Element Method
,”
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
de Borst
, and
T. J. R.
Hughes
, eds.,
Wiley
, Chichester, Vol.
1
, Chap. 5.
13.
Babuška
,
I.
, and
Strouboulis
,
T.
, 2001,
The Finite Element Method and its Reliability
,
Oxford University Press
, Oxford.
14.
Clough
,
R. W.
, and
Tocher
,
J. L.
, 1966, “
Finite Element Stiffness Matrices for Analysis of Plate Bending
,”
Proc. of Conference on Matrix Methods in Structural Mechanics
, Report AFFDL-TR-66-80, Wright-Patterson Air Force Base, OH, pp.
515
545
.
15.
Greste
,
O.
, 1970, “
Finite Element Analysis of Tubular K Joints
,” Tech. Report UCSESM 70-11,
University of California at Berkeley
.
16.
Pitkäranta
,
J.
, 2003, “
Mathematical and Historical Reflections on the Lowest Order Finite Element Models for Thin Structures
,”
Comput. Struct.
0045-7949,
81
, pp.
895
121
.
17.
Ciarlet
,
P. G.
, 1978,
The Finite Element Method for Elliptic Problems
,
North-Holland
, Amsterdam.
18.
Királyfalvi
,
G.
, and
Szabó
,
B. A.
, 1997, “
Quasi-Regional Mapping for the p -Version of the Finite Element Method
,”
Finite Elem. Anal. Design
0168-874X,
27
, pp.
85
97
.
19.
Düster
,
A.
,
Bröker
,
H.
, and
Rank
,
E.
, 2001, “
The p -Version of the Finite Element Method for Three-Dimensional Curved Thin Walled Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
, pp.
673
703
.
20.
Geymonat
,
G.
, and
Sanchez-Palencia
,
E.
, 1995, “
On the Rigidity of Certain Surfaces With Folds and Applications to Shell Theory
,”
Arch. Ration. Mech. Anal.
0003-9527,
129
, pp.
11
45
.
You do not currently have access to this content.