Abstract

The purpose of this work is to develop an averaging approach to study the dynamics of a vibro-impact system excited by random perturbations. As a prototype, we consider a noisy single-degree-of-freedom equation with both positive and negative stiffness and achieve a model reduction, i.e., the development of rigorous methods to replace, in some asymptotic regime, a complicated system by a simpler one. To this end, we study the equations as a random perturbation of a two-dimensional weakly dissipative Hamiltonian system with either center type or saddle type fixed points. We achieve the model-reduction through stochastic averaging. Examination of the reduced Markov process on a graph yields mean exit times, probability density functions, and stochastic bifurcations.

1.
Thompson
,
J. M. T.
, and
Ghaffari
,
R.
, 1982, “
Chaos After Period-Doubling Bifurcations in the Resonance of an Impact Oscillator
,”
Phys. Lett. A
0375-9601,
91
(
1
), pp.
5
8
.
2.
Shaw
,
S. W.
, and
Holmes
,
P. J.
, 1983, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
0022-460X,
90
(
1
), pp.
129
155
.
3.
Shaw
,
S. W.
, 1985, “
Forced Vibrations of a Beam With One-Sided Amplitude Constraint; Theory and Experiment
,”
J. Sound Vib.
0022-460X,
99
, pp.
199
212
.
4.
Shaw
,
S. W.
, 1985, “
The Dynamics of a Harmonically Excited System Having Rigid Amplitude Constraints, Parts 1 and 2
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
453
464
.
5.
Shaw
,
S. W.
, and
Holmes
,
P. J.
, 1983, “
A Periodically Forced Oscillator With Large Dissipation
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
849
857
.
6.
Shaw
,
S. W.
, and
Rand
,
R. H.
, 1989, “
The Transition to Chaos in a Simple Mechanical System
,”
Int. J. Non-Linear Mech.
0020-7462,
24
(
1
), pp.
41
56
.
7.
Dimentberg
,
M. F.
, and
Menyailov
,
A. I.
, 1979, “
Response of a Single-Mass Vibro-Impact System to White-Noise Random Excitation
,”
Z. Angew. Math. Mech.
0044-2267,
59
, pp.
709
716
.
8.
Fogli
,
M.
,
Bressolette
,
P.
, and
Bernard
,
P.
, 1996, “
The Dynamics of a Stochastic Oscillator With Impacts
,”
Eur. J. Mech. A/Solids
0997-7538,
15
(
2
), pp.
213
241
.
9.
Zhuravlev
,
V. F.
, 1976, “
A Method for Analyzing Vibration-Impact Systems by Means of Special Functions
,”
Mech. Solids
0025-6544,
11
, pp.
23
27
.
10.
Freidlin
,
M. I.
, and
Wentzell
,
A. D.
, 1994,
Random Perturbations of Hamiltonian Systems
,
American Mathematical Society
, Providence, RI.
11.
Freidlin
,
M. I.
, and
Weber
,
M.
, 1998, (
Random Perturbations of Nonlinear Systems
,)
Ann. Prob.
,
26
(
3
),
925
967
.
12.
Sowers
,
R. B.
, 2003, “
Stochastic Averaging Near a Homoclinic Orbit With Multiplicative Noise
,”
Stochastics Dyn.
0219-4937,
3
(
3
), pp.
299
391
.
13.
Namachchivaya
,
N. Sri
, and
Sowers
,
R. B.
, 2001, “
Unified Approach for Noisy Nonlinear Mathieu-Type Systems
,”
Stochastics Dyn.
0219-4937,
1
(
3
), pp.
405
450
.
14.
Karlin
,
S.
, and
Taylor
,
H. M.
, 1981,
A Second Course in Stochastic Processes
,
Academic Press
, New York.
15.
Namachchivaya
,
N. Sri
, and
Sowers
,
R.
, 2002, “
Rigorous Stochastic Averaging at a Center With Additive Noise
,”
Meccanica
0025-6455,
37
(
2
), pp.
85
114
.
16.
Higham
,
D. J.
, 2001, “
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
,”
SIAM Rev.
0036-1445,
43
, pp.
525
546
.
17.
Arnold
,
L.
,
Namachchivaya
,
N. Sri
, and
Schenk
,
K. L.
, 1996, “
Toward an Understanding of Stochastic Hopf Bifurcations: A Case Study
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
6
(
11
), pp.
1947
1975
.
18.
Namachchivaya
,
N. Sri
,
Sowers
,
R. B.
, and
Vedula
,
L.
, 2001, “
Non-standard Reduction of Noisy Duffing-van der Pol Equation
,”
Dyn. Syst.
1468-9367,
16
(
3
), pp.
223
245
.
You do not currently have access to this content.