A new first-order shear deformation theory (FSDT) has been developed and verified for laminated plates and sandwich plates. Based on the definition of Reissener–Mindlin’s plate theory, the average transverse shear strains, which are constant through the thickness, are improved to vary through the thickness. It is assumed that the displacement and in-plane strain fields of FSDT can approximate, in an average sense, those of three-dimensional theory. Relationship between FSDT and three-dimensional theory has been systematically established in the averaged least-square sense. This relationship provides the closed-form recovering relations for three-dimensional variables expressed in terms of FSDT variables as well as the improved transverse shear strains. This paper makes two main contributions. First an enhanced first-order shear deformation theory (EFSDT) has been developed using an available higher-order plate theory. Second, it is shown that the displacement fields of any higher-order plate theories can be recovered by EFSDT variables. The present approach is applied to an efficient higher-order plate theory. Comparisons of deflection and stresses of the laminated plates and sandwich plates using present theory are made with the original FSDT and three-dimensional exact solutions.

1.
Reissner
,
E.
, 1950, “
On a Variational Theorem in Elasticity
,”
J. Math. Phys. (Cambridge, Mass.)
0097-1421,
29
, pp.
90
95
.
2.
Mindlin
,
R. D.
, 1951, “
Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
18
, pp.
31
38
.
3.
Lo
,
K. H.
,
Christensen
,
R. M.
, and
Wu
,
F. M.
, 1977, “
A Higher-Order Theory of Plate Deformation Part 2: Laminated Plates
,”
ASME J. Appl. Mech.
0021-8936,
44
, pp.
669
676
.
4.
Levinson
,
M.
, 1980, “
An Accurate Simple Theory of the Statics and Dynamics of Elastic Plates
,”
Mech. Res. Commun.
0093-6413,
7
, pp.
343
350
.
5.
Reddy
,
J. N.
, 1984, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
745
752
.
6.
Reddy
,
J. N.
, 1987, “
A Generalization of Two-Dimensional Theories of Laminated Plates
,”
Commun. Appl. Numer. Methods
0748-8025,
3
, pp.
173
180
.
7.
Di Sciuva
,
M.
, 1986, “
Vibration and Buckling of Simply Supported Thick Multilayered Orthotropic Plates: An Evaluation of a New Displacement Model
,”
J. Sound Vib.
0022-460X,
105
, pp.
425
442
.
8.
Cho
,
M.
, and
Parmerter
,
R. R.
, 1992, “
An Efficient Higher Order Plate Theory for Laminated Composites
,”
Compos. Struct.
0263-8223,
20
, pp.
113
123
.
9.
Cho
,
M.
, and
Parmerter
,
R. R.
, 1993, “
Efficient Higher Order Composite Plate Theory for General Lamination Configurations
,”
AIAA J.
0001-1452,
31
, pp.
1299
1306
.
10.
Noor
,
A. K.
, and
Burton
,
W. S.
, 1989, “
Assessment of Shear Deformation Theories for Multilayered Composite Plates
,”
Appl. Mech. Rev.
0003-6900,
42
, pp.
1
13
.
11.
Kapania
,
R. K.
, and
Raciti
,
S.
, 1989, “
Recent Advances in Analysis of Laminated Beams and Plates
,”
AIAA J.
0001-1452,
27
, pp.
923
946
.
12.
Reddy
,
J. N.
, and
Robbins
, Jr.,
D. H.
, 1994, “
Theories and Computational Models for Composite Laminates
,”
Appl. Mech. Rev.
0003-6900,
47
, pp.
147
169
.
13.
Whitney
,
J. M.
, 1972, “
Stress Analysis of Thick Laminated Composites and Sandwich Plates
,”
J. Compos. Mater.
0021-9983,
6
, pp.
426
440
.
14.
Whitney
,
J. M.
, 1973, “
Shear Correction Factors for Orthotropic Laminates Under Static Load
,”
ASME J. Appl. Mech.
0021-8936,
40
, pp.
302
304
.
15.
Qi
,
Y.
, and
Knight
, Jr.,
N. F.
, 1996, “
A Refined First-Order Shear-Deformation Theory and Its Justification by Plate-Strain Bending Problem of Laminated Plates
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
49
64
.
16.
Knight
, Jr.,
N. F.
, and
Qi
,
Y.
, 1997, “
Restatement of First-Order Shear-Deformation Theory for Laminated Plates
,”
Int. J. Solids Struct.
0020-7683,
34
(
4
), pp.
481
492
.
17.
Noor
,
A. K.
, and
Burton
,
W. S.
, 1990, “
Stress and Free Vibration Analysis of Multilayered Composite Plates
,”
Compos. Struct.
0263-8223,
14
, pp.
233
265
.
18.
Cho
,
M.
, and
Kim
,
J.-H.
, 1996, “
Postprocess Method Using Displacement Field of Higher Order Laminated Composite Plate Theory
,”
AIAA J.
0001-1452,
34
, pp.
362
368
.
19.
Cho
,
M.
, and
Choi
,
Y. J.
, 2001, “
A New Postprocessing Method for Laminated Composites of General Lamination Configurations
,”
Compos. Struct.
0263-8223,
54
, pp.
397
406
.
20.
Hodges
,
D. H.
,
Lee
,
B. W.
, and
Atilgan
,
A. R.
, 1993, “
Application of the Variational-Asymptotic Method to Laminated Composite Plates
,”
AIAA J.
0001-1452,
31
, pp.
1674
1683
.
21.
Berdichevsky
,
V. L.
, 1979, “
Variational-Asymptotic Method of Construction a Theory of Shell
,”
PMM
,
43
, pp.
664
687
.
22.
Sutyrin
,
V. G.
, 1997, “
Derivation of Plate Theory Accounting Asymptotically Correct Shear Deformation
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
905
915
.
23.
Dauge
,
M.
, and
Gruais
,
I.
, 1996, “
Asymptotics of Arbitrary Order for a Thin Elastic Clamped Plate, I. Optimal Error Estimates
,”
Asymptotic Anal.
0921-7134,
13
, pp.
167
197
.
24.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates, Theory and Analysis
,
CRC
, Boca Raton, FL.
25.
Pagano
,
N. J.
, 1970, “
Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates
,”
J. Compos. Mater.
0021-9983,
3
, pp.
398
441
.
26.
Pagano
,
N. J.
, 1972, “
Elastic Behavior of Multilayered Bidirectional Composites
,”
AIAA J.
0001-1452,
10
, pp.
931
933
.
27.
Rao
,
K. M.
, and
Meyer-Piening
,
H.-R.
, 1991, “
Analysis of Sandwich Plates Using a Hybrid-Stress Finite Element
,”
AIAA J.
0001-1452,
29
, pp.
1498
1506
.
28.
Cho
,
M.
, and
Kim
,
J.-S.
, 1997, “
Improved Mindlin Plate Stress Analysis for Laminated Composites in Finite Element Method
,”
AIAA J.
0001-1452,
35
, pp.
587
590
.
You do not currently have access to this content.