An analytical solution to the virtual mass of a rotating fluid or solid sphere is obtained. The solution is valid at Reynolds number . The solution was based on integrating the kinetic energy of the fluid round the rotating sphere. The value of the virtual mass coefficient of the rotating sphere was found to be equal to 5.
Issue Section:
Technical Briefs
1.
Davis
, A. M. J.
, 1977, “High Frequency Limiting Virtual Mass Coefficients of Heaving Half-Immersed Spheres
,” J. Fluid Mech.
0022-1120, 80
, pp. 305
–319
.2.
Stokes
, G. G.
, 1851, Mathematical and Physical Papers
, 3
, Johnson Reprint Corp.
, NY, p. 34
.3.
Drew
, D. A.
, and Lahey
, Jr., R. T.
, 1987, “The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Fluid
,” Int. J. Multiphase Flow
0301-9322, 13
, pp. 113
–121
.4.
Chan
, K. W.
, Baird
, M. H. I.
, and Round
, G. F.
, 1974, “Motion of a Solid Sphere in a Horizontally Oscillating Liquid
,” Chem. Eng. Sci.
0009-2509, 29
, pp. 1585
–1592
.5.
Kurose
, R.
, and Komori
, S.
, 1999, “Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow
,” J. Fluid Mech.
0022-1120, 384
, pp. 183
–206
.6.
Milne-Thomson
, L. M.
, 1972, Theoretical Hydrodynamics
, 5th ed., Macmillan
, Glasgow, U.K.7.
Bagchi
, P.
, and Balachandar
, S.
, 2003, “Inertial and Viscous Forces on a Rigid Sphere in Straining Flows at Moderate Reynolds Numbers
,” J. Fluid Mech.
0022-1120, 481
, pp. 105
–148
.8.
Magnaudet
, J.
, Rivero
, M.
, and Fabre
, J.
, 1995, “Accelerated Flows Past a Rigid Sphere or a Spherical Bubble. Part 1. Steady Straining Flow
,” J. Fluid Mech.
0022-1120, 284
, pp. 97
–135
.9.
Lugt
, H. J.
, 1983, Vortex Flow in Nature and Technology
, Wiley
, NY.10.
Kendoush
, A. A.
, 2003, “The Virtual Mass of a Spherical-Cap Bubble
” Phys. Fluids
1070-6631, 15
(9
), pp. 2782
–2785
; Kendoush
, A. A.
,2004, “The Virtual Mass of a Spherical-Cap Bubble
” Phys. Fluids
1070-6631,16
(7
), p. 2713
(E).11.
Cheng
, L. Y.
, Drew
, D. A.
, and Lahey
, Jr., R. T.
, 1978, “Virtual Mass Effects in Two-Phase Flow
,” Report No. NUREG/CR-0020, Division of Reactor Safety Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission.12.
Batchelor
, G. K.
, 1967, An Introduction to Fluid Dynamics
, Cambridge University Press
, Cambridge, England, p. 454
.13.
Sirdhar
, G.
, and Katz
, J.
, 1995, “Drag and Lift Forces on Microscopic Bubbles Entrained by a Vortex
,” Phys. Fluids
1070-6631, 7
(2
), pp. 389
–399
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.