We present a new multiscale/stabilized finite element method for compressible and incompressible elasticity. The multiscale method arises from a decomposition of the displacement field into coarse (resolved) and fine (unresolved) scales. The resulting stabilized-mixed form consistently represents the fine computational scales in the solution and thus possesses higher coarse mesh accuracy. The ensuing finite element formulation allows arbitrary combinations of interpolation functions for the displacement and stress fields. Specifically, equal order interpolations that are easy to implement but violate the celebrated Babushka-Brezzi inf-sup condition, become stable and convergent. Since the proposed framework is based on sound variational foundations, it provides a basis for a priori error analysis of the system. Numerical simulations pass various element patch tests and confirm optimal convergence in the norms considered.

1.
Herrmann
,
L. R.
, 1965, “
Elasticity Equations for Nearly Incompressible Materials by a Variational Theorem
,”
AIAA J.
0001-1452
3
, pp.
1896
1900
.
2.
Simo
,
J. C.
,
Taylor
,
R. L.
, and
Pister
,
K. S.
, 1985, “
Variational and Projection Methods for the Volume Constraint in Finite Deformation Elasto-Plasticty
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
51
, pp.
177
208
.
3.
Arnold
,
D. N.
,
Brezzi
,
F.
, and
Douglas
, Jr.,
J.
, 1984, “
PEERS: A New Mixed Finite Element for Plane Elasticity
,”
Jpn. J. Ind. Appl. Math.
0916-7005, Part 1
1
, pp.
347
367
.
4.
Cruchaga
,
M. A.
, and
Onate
,
E.
, 1997, “
A Finite Element Formulation for Incompressible Flow Problems Using a Generalized Streamline Operator
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
143
, pp.
49
67
.
5.
Kouhia
,
R.
, and
Stenberg
,
R.
, 1995, “
A Linear Nonconforming Finite Element Method for Nearly Incompressible Elasticity and Stokes Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
124
, pp.
195
212
.
6.
Malkus
,
D. S.
, and
Hughes
,
T. J. R.
, 1987, “
Mixed Finite Element Methods-Reduced and Selective Integration Techniques: A Unification of Concepts
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
15
(
1
), pp.
63
81
.
7.
Stenberg
,
R.
, 1987, “
On Some Three-Dimensional Finite Elements for Incompressible Media
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
63
, pp.
261
269
.
8.
Belytschko
.
T.
, and
Branchrach
,
W. E.
, 1986, “
Efficient Implementation of Quadrilaterals With High Coarse Mesh Accuracy
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
54
, pp.
279
301
.
9.
Belytschko
,
T.
, and
Bindeman
,
L. P.
, 1991, “
Assumed Strain Stabilization of the 4-Node Quadrilateral With 1-Point Quadrature for Nonlinear Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
88
, pp.
311
340
.
10.
Hughes
,
T. J. R.
, 1980, “
Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Media
,”
Int. J. Numer. Methods Eng.
0029-5981
15
, pp.
1413
1418
.
11.
Hughes
,
T. J. R.
, and
Malkus
,
D. S.
, 1983, “
A General Penalty/Mixed Equivalence Theorem for Anisotropic, Incompressible Finite Elements
,”
Hybrid and Mixed Finite Element Methods
,
S. N.
Atluri
,
R. H.
Gallagher
, and
O. C.
Zienkiewicz
, eds.,
John Wiley
, London, pp.
487
496
.
12.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1986, “
On the Variational Foundations of Assumed Strain Methods
,”
J. Appl. Mech.
0021-8936
53
, pp.
51
54
.
13.
Simo
,
J. C.
, and
Rifai
,
M. S.
, 1990, “
A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
0029-5981
29
, pp.
1595
1636
.
14.
Brezzi
,
F.
, and
Bathe
,
K. J.
, 1990, “
A Discourse on the Stability Conditions for Mixed Finite Element Formulations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
82
(
1-3
), pp.
27
57
.
15.
Chapelle
,
D.
, and
Bathe
,
K. J.
, 1993, “
The Inf-Sup Test
,”
Comput. Struct.
0045-7949
47
(
4-5
), pp.
537
545
.
16.
Cook
,
R. D.
, 1974, “
Improved Two-Dimensional Finite Element
,”
J. Struct. Div. ASCE
0044-8001
100
, pp.
1851
1863
.
17.
Klaas
,
O.
,
Maniatty
,
A. M.
, and
Shephard
,
M. S.
, 1999, “
A Stabilized Mixed Petrov-Galerkin Finite Element Method for Finite Elasticity. Formulation for Linear Displacement and Pressure Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
180
, pp.
65
79
.
18.
Simo
,
J. C.
, and
Armero
,
F.
, 1992, “
Geometrically Nonlinear Enhanced Strain Mixed Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
0029-5981
33
, pp.
1413
1449
.
19.
Taylor
,
R. L.
,
Beresford
,
P. J.
, and
Wilson
,
E. L.
, 1976, “
A Nonconforming Element for Stress Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981
10
, pp.
1211
1219
.
20.
Brezzi
,
F.
, and
Fortin
,
M.
, 1991,
Mixed and Hybrid Finite Element Methods
, Vol.
15
,
Springer Series in Computational Mathematics
,
Springer-Verlag
, NY, 1991.
21.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
, Englewoods Cliffs, NJ (
Dover Edition
, 2000), Chap. 4.
22.
Hughes
,
T. J. R.
, and
Franca
,
L. P.
, 1987, “
A New Finite Element Formulation for Computational Fluid Dynamics: VII. The Stokes Problem With Various Well-Posed Boundary Conditions: Symmetric Formulations That Converge for All Velocity/Pressure Spaces
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
65
, pp.
85
96
.
23.
Commend
,
S.
,
Truty
,
A.
, and
Zimmermann
,
T.
, 2004, “
Stabilized Finite Elements Applied to Elastoplasticity: I. Mixed Displacement-Pressure Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
193
, pp.
3559
3586
.
24.
Garikipati
,
K.
, and
Hughes
,
T. J. R.
, 2000, “
A Variational Multiscale Approach to Strain Localization-Formulation For Multidimensional Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
188
, pp.
39
60
.
25.
Hughes
,
T. J. R.
, 1995, “
Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
127
, pp.
387
401
.
26.
Hughes
,
T. J. R.
,
Masud
,
A
, and
Harari
,
I.
, 1995, “
Numerical Assessment of Some Membrane Elements With Drilling Degrees of Freedom
,”
Comput. Struct.
0045-7949
55
(
2
), pp.
297
314
.
27.
Kasper
,
E. P.
, and
Taylor
,
R. L.
, 2000, “
A Mixed-Enhanced Strain Method. Part I: Geometrically Linear Problems
,”
Comput. Struct.
0045-7949
75
, pp.
237
250
.
This content is only available via PDF.
You do not currently have access to this content.