The behavior of a nano-scale cylindrical body (e.g., a fiber), lying on a substrate and acted upon by a combination of normal and tangential forces, is the subject of this investigation. As the scale decreases to the nano level, adhesion becomes an important issue in this contact problem. Thus, this investigation treats the two-dimensional plane strain elastic deformation of both the cylinder and the substrate during a rolling/sliding motion, including the effect of adhesion using the Maugis model. For the initiation of sliding, the Mindlin approach is used, whereas for rolling, the Carter approach is utilized. Each case is modified for nano-scale effects by including the effect of adhesion on the contact area and by using the adhesion theory of friction for the friction stress. Analytical results are given for the normal and tangential loading problems, including the initiation of sliding and rolling in terms of dimensionless quantities representing adhesion, cylinder size, and applied forces.

1.
Rimai, D. S., and Quesnel, D. J., 2001, Fundamentals of Particle Adhesion (Polymer Surfaces and Interfaces Series), Global Press.
2.
Bradley
,
R. S.
,
1932
, “
The Cohesive Force Between Solid Surfaces and the Surface Energy of Solids
,”
Philos. Mag.
,
13
, pp.
853
862
.
3.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
, pp.
3101
3130
.
4.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
67
, pp.
314
326
.
5.
Tabor
,
D.
,
1976
, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
,
58
, pp.
1
13
.
6.
Greenwood
,
J. A.
,
1997
, “
Adhesion of Elastic Spheres
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
1277
1297
.
7.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: the JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
, pp.
243
269
.
8.
Baney
,
J. M.
, and
Hui
,
C.-Y.
,
1997
, “
A Cohesive Zone Model for the Adhesion of Cylinders
,”
J. Adhes. Sci. Technol.
,
11
, pp.
393
406
.
9.
Sari, O. T., 2003, “Nano-Scale Effects in Adherence, Sliding and Rolling of a Cylinder on a Substrate,” MS thesis, Mechanical Engineering Dept., Northeastern University, Boston.
10.
Carpick
,
R. W.
,
Agrait
,
N.
,
Ogletree
,
D. F.
, and
Salmeron
,
M.
,
1996
, “
Measurement of Interfacial Shear (Friction) With an Ultrahigh Vacuum Atomic Force Microscope
,”
J. Vac. Sci. Technol. B
,
14
, pp.
1289
1295
.
11.
Homola
,
A. M.
,
Israelachvili
,
J. N.
,
McGuiggan
,
P. M.
, and
Gee
,
M. L.
,
1990
, “
Fundamental Experimental Studies in Tribology: The Transition From ‘Interfacial’ Friction of Undamaged Molecularly Smooth Surfaces to ‘Normal’ Friction With Wear
,”
Wear
,
136
, pp.
65
83
.
12.
Hurtado
,
J. A.
, and
Kim
,
K.-S.
,
1999
, “
Scale Effects in Friction of Single Asperity Contacts: Part I; From Concurrent Slip to Single-Dislocation-Assisted Slip
,”
Proc. R. Soc. London, Ser. A
,
455
, pp.
3363
3384
.
13.
Hurtado
,
J. A.
, and
Kim
,
K.-S.
,
1999
, “
Scale Effects in Friction in Single Asperity Contacts: Part II; Multiple-Dislocation-Cooperated Slip
,”
Proc. R. Soc. London, Ser. A
,
455
, pp.
3385
3400
.
14.
Israelachvili, J., 1992, Intermolecular and Surface Forces, Academic Press, New York.
15.
Barber, J. R., 2002, Elasticity, 2nd ed., Kluwer Academic, Dordrecht, The Netherlands.
16.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
17.
Tada, H., Paris, P. C., and Irwin, G. R., 2000, The Stress Analysis of Cracks Handbook, 3rd ed., ASME, New York.
18.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
J. Appl. Mech.
,
17
, pp.
259
268
.
19.
Erde´lyi, A., 1954, Tables of Integral Transforms, Bateman Manuscript Project, McGraw-Hill, New York.
20.
Carter
,
F. W.
,
1926
, “
On the Action of a Locomotive Driving Wheel
,”
Proc. R. Soc. London, Ser. A
,
112
, pp.
151
157
.
You do not currently have access to this content.