Abstract

First approximation analytical solutions are constructed for finite and semi-infinite, fully anisotropic elastic tubes of constant thickness h and arbitrary cross section, subject to purely kinetic or purely kinematic boundary conditions. Final results contain relative errors of O(hR), where R is some equivalent cross sectional radius. Solutions are decomposed into the sum of an exact beamlike or Saint-Venant solution, treated in Ladevèze et al. (Int. J. Solids Struct., 41, pp. 1925–1944, 2004) and extended in an appendix; a rapidly decaying edge-zone solution; and a slowly decaying semi-membrane-inextensional-bending (MB) solution. Explicit conditions on the boundary data are given that guarantee decaying solutions. The MB solutions are expressed as an infinite series of complex-valued exponential functions times real-valued one-dimensional eigenfunctions which satisfy a fourth-order differential equation in the circumferential coordinate and depend on the pointwise cross sectional curvature only.

1.
Ladevèze
,
P.
, and
Simmonds
,
J. G.
, 1996, “
De Nouveaux Concepts en Théorie des Poutres pour des Charges et Géométries Quelconques
,”
Compt. Rend.
0001-4036
322
(
II
) pp.
455
462
.
2.
Ladevèze
,
P.
, and
Simmonds
,
J. G.
, 1998, “
New Concepts for Linear Beam Theory with Arbitrary Geometry and Loading
,”
Eur. J. Mech. A/Solids
0997-7538
17
, pp.
377
402
.
3.
Ladevèze
,
P.
,
Sanchez
,
Ph.
, and
Simmonds
,
J. G.
, 2004, “
Beamlike (Saint-Venant) Solutions for Fully Anisotropic Elastic Tubes of Arbitrary Cross Section
,”
Int. J. Solids Struct.
0020-7683
41
, pp.
1925
1944
.
4.
Sanders
,
J. L.
Jr.
, 1959, “
An Improved First-Approximation Theory for Thin Shells
”, NASA Rep. 24.
5.
Koiter
,
W. T.
, 1959, “
A Consistent First Approximation in the General Theory of Thin Elastic Shells
,”
The Theory of Thin Elastic Shells
,
Proc IUTAM Symposium
, Delft, 1959,
Koiter
W. T.
, ed.,
North-Holland
, Amsterdam.
6.
Ladevèze
,
P.
ed, 1985,
Local Effects in the Analysis of Structures
,
Elsevier
, Amsterdam.
7.
Simmonds
,
J. G.
, 1976, “
Recent Advances in Shell Theory
,”
Advances in Engineering Science
,
13th Annual Meeting Society of Engineering Science
, NASA CP-2001, pp.
617
626
.
8.
Goldenveiser
,
A. L.
, 1940, “
Equations of the Theory of Thin Shells
” (in Russian),
Prikl. Mat. Mekh.
0032-8235,
4
, pp.
35
42
.
9.
Lure
A. I.
, 1940, “
General Theory of Thin Elastic Shells
” (in Russian),
Prikl. Mat. Mekh.
0032-8235,
4
, pp.
7
34
.
10.
McDevitt
,
T. J.
, and
Simmonds
,
J. G.
, 1999, “
Reduction of the Sanders-Koiter Equations for Fully Anisotropic Circular Cylindrical Shells to Two Coupled Equations for a Stress and a Curvature Function
,”
J. Appl. Mech.
0021-8936,
66
, pp.
593
597
.
11.
Budiansky
,
B.
, and
Sanders
,
J. L.
, Jr.
, 1963, “
On the ‘Best’ First-Order Linear Shell theory
,”
Progress in Applied Mechanics
(Prager Anniversary Volume),
Macmillan
, New York, pp.
129
140
.
12.
Gregory
,
R. D.
, and
Wan
,
F. Y. M.
, 1984, “
Decaying States of Plane Strain in a Semi-Infinite Strip and Boundary Conditions for Plate Theory
,”
J. Elast.
0374-3535
14
, pp.
27
64
.
13.
Ladevèze
,
P.
, 1983, “
Sur le Principe de Saint-Venant en élasticité
,”
J. Mec. Theor. Appl.
0750-7240
2
, pp.
161
184
.
14.
Ladevèze
,
P.
, and
Simmonds
,
J. G.
, 2001, “
The Exact One-Dimensional Theory for End-Loaded Fully Anisotropic Beams of Narrow Cross Section
,”
J. Appl. Mech.
0021-8936
68
, pp.
865
868
.
You do not currently have access to this content.