A creep damage model is presented that allows for anisotropic distributions of damage in composite materials. An earlier model by the writers allowed for anisotropic damage growth rate but, based on a scalar state variable, failed to account for anisotropic distributions of damage. A vectorial state variable is introduced that allows a representation of anisotropic damage distribution. As in earlier work, a fundamental assumption is that the principally damaging stress components are tensile traction and longitudinal shear at the fiber/matrix interface. Application of the creep damage model is made to calculations involving homogenously stressed composite elements under transverse tensile and longitudinal shear stress and to cross plied thin-walled tubes under tension/torsion. Although the emphasis is phenomenological, with focus on a mathematical structure for representing anisotropic distributions of damage, a meaningful creep damage model must rest on fundamental material science and microstructural examination. Verification experiments involving tension/torsion testing of thin-walled composite tubes together with detailed microstructural examination are discussed and outlined.

1.
Grobstein
,
T. L.
, 1989, “
The interface in tungsten fiber reinforced niobium metal matrix composites
,” NASA TM-102122, National Aeronautics and Space Administration,
Lewis Research Center
, Cleveland, OH.
2.
Grobstein
,
T. L.
, 1989, “
Creep behavior of tungsten fiber reinforced niobium metal matrix composites
,” NASA TM-102307, National Aeronautics and Space Administration,
Lewis Research Center
, Cleveland, OH.
3.
Shewmon
,
P. G.
, 1963,
Diffusion in Solids
,
Material Science and Engineering Series
,
McGraw–Hill
, New York.
4.
Hull
,
D.
and
Rimmer
,
D. E.
, 1959, “
The growth of grain boundary voids under stress
,”
Philos. Mag.
0031-8086,
4
, pp.
673
687
.
5.
Chuang
,
T-J.
and
Rice
,
J. R.
, 1973, “
The shape of intergranular creep cracks growing by surface diffusion
,”
Acta Metall.
0001-6160,
21
(
12
), p.
1625
.
6.
Cocks
,
A. C. F.
and
Ashby
,
M. F.
, 1982, “
On creep fracture by void growth
,”
Prog. Mater. Sci.
0079-6425,
27
, pp.
189
244
.
7.
Robinson
,
D. N.
,
Binienda
,
W. K.
, and
Miti-Kavuma
,
M.
, 1992, “
Creep and creep rupture of metallic composites
,”
J. Eng. Mech.
0733-9399,
118
(
8
), pp.
1646
1660
.
8.
Robinson
,
D. N.
,
Binienda
,
W. K.
, and
Ruggles
,
M. B.
, 2003, “
Creep of polymer matrix composites. I: Norton/Bailey creep law for transverse isotropy
,”
J. Eng. Mech.
0733-9399,
129
, pp.
310
317
.
9.
Binienda
,
W. K.
,
Robinson
,
D. N.
, and
Ruggles
,
M. B.
, 2003, “
Creep of polymer matrix composites. II: Monkman-Grant failure relationship for transverse isotropy
,”
J. Eng. Mech.
0733-9399,
129
, pp.
318
323
.
10.
Kachanov
,
L. M.
, 1986,
Introduction to Continuum Damage Mechanics
,
Martinus-Nijhoff
, Dordrecht.
11.
Onat
,
E. T.
, 1986, “
Representation of mechanical behavior in the presence of internal damage
,”
Eng. Fract. Mech.
0013-7944,
25
, pp.
605
614
.
12.
Onat
,
E. T.
, 1991, “
Group theory and representation of microstructure and mechanical behavior of materials
,”
Modeling the Deformation of Crystalline Solids
, edited by
T. C.
Lowe
,
A. D.
Rollett
,
P. S.
Follensbee
, and
G. S.
Daehn
, The Minerals, Metals and Materials Society.
13.
Onat
,
E. T.
, and
Leckie
,
F. A.
, 1988, “
Representation of mechanical behavior in the presence of changing internal structure
,”
J. Appl. Mech.
0021-8936,
55
, pp.
1
10
.
14.
Robinson
,
D. N.
,
Kim
,
K-J.
and
White
,
J. L.
, 2002, “
Constitutive model of a transversely isotropic Bingham fluid
,”
J. Appl. Mech.
0021-8936,
69
, pp.
641
648
.
15.
Robinson
,
D. N.
, and
Binienda
,
W. K.
, 2001, “
Optimal fiber orientation in creeping composite structures
,”
J. Appl. Mech.
0021-8936,
68
(
2
), pp.
213
217
.
16.
Robinson
,
D. N.
, 2004, “
Creep/damage model of PMC with two families of fibers
” (in preparation).
17.
Trampczynski
,
W. A.
,
Hayhurst
,
D. R.
, and
Leckie
,
F. A.
, 1981, “
Creep rupture of copper and aluminium under nonproportional loading
,”
J. Mech. Phys. Solids
0022-5096,
29
, pp.
353
374
.
18.
Leckie
,
F. A.
, and
Hayhurst
,
D. R.
, 1974, “
Creep rupture of structures
,”
Proc. R. Soc. London, Ser. A
1364-5021,
240
, p.
323
.
19.
Rabotnov
,
Y. N.
, 1968,
Creep Problems in Structural Mechanics
,
North–Holland
, Amsterdam.
You do not currently have access to this content.