The MCF model is used to study the nonclassical heat conduction effects in Stokes’ second problem of a micropolar fluid. The effects of the thermal relaxation time and the structure wave on angular velocity, velocity field, and temperature are investigated. The skin friction, the displacement thickness, and the rate of the heat transfer at the plate are determined.

1.
Maxwell
,
J. C.
, 1867, “
On the Dynamical Theory of Gases
,”
Philos. Trans. R. Soc. London
0370-2316,
157
, pp.
49
88
.
2.
Ackerman
,
C. C.
,
Bertman
,
B.
,
Fairbank
,
H. A.
, and
Guyer
,
R. A.
, 1966, “
Second Solid Helium
,”
Phys. Rev. Lett.
0031-9007,
16
, pp.
789
–791.
3.
Puri
,
P.
, and
Kythe
,
P. K.
, 1998, “
Stokes’ First and Second Problems for Rivlin—Ericksen Fluids With Nonclassical Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
44
50
.
4.
Kythe
,
P. K.
, and
Puri
,
P.
, 1988, “
Unsteady MHD Free-Convection Flows on a Porous Plate With Time-Dependent Heating in a Rotating Medium
,”
Astrophys. Space Sci.
0004-640X,
143
, pp.
51
62
.
5.
Puri
,
P.
, and
Kythe
,
P. K.
, 1995, “
Nonclassical Thermal Effects in Stokes’ Second Problem
,”
Acta Mech.
0001-5970,
112
, pp.
1
9
.
6.
Puri
,
P.
, and
Jordan
,
P. M.
, 2002, “
Some Recent Developments in the Unsteady Flow of Dipolar Fluids
,”
Developments in Theoretical and Applied Mechanics
,
XXI
, pp.
499
508
.
7.
McTaggart
,
C. L.
, and
Lindsay
,
K. A.
, 1985, “
Nonclassical Effects in the Benard Problem
,”
SIAM J. Appl. Math.
0036-1399,
45
, pp.
70
92
.
8.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1989, “
Heat Waves
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
41
–73.
9.
Joseph
,
D. D.
, and
Preziosi
,
L.
, 1990, “
Addendum to the Paper Heat Waves
,”
Rev. Mod. Phys.
0034-6861
62
, pp
375
–391.
10.
Puri
,
P.
, 1973, “
Plane waves in Generalized Thermoelasticity
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
735
744
.
11.
Puri
,
P.
, and
Jordan
,
P. M.
, 1999, “
Stokes First Problem for a Dipolar With Nonclassical Heat Conduction
,”
J. Eng. Math.
0022-0833,
36
, pp.
219
240
.
12.
Eringen
,
A. C. J.
, 1966, “
Theory of Micropolar Fluids
,“
J. Math. Mech.
0095-9057,
16
, pp.
1
18
.
13.
Peddieson
,
J.
, and
McNitt
,
R. P.
, 1970, “
Boundary Layer Theory for Micropolar Fluid
,”
Recent Adv. Engng. Sci.
,
5
, pp
405
426
.
14.
Willson
,
A.
, 1970, “
Boundary Layers in Micropolar Fluid
,”
Proc. Cambridge Philos. Soc.
0068-6735,
67
, pp.
469
481
.
15.
Soundalgekar
,
V. M.
, and,
Takhar
,
H. S.
, 1977, “
MHD Forced and Free Convective Flow Past a Semi-Infinite Plate
,”
AIAA J.
0001-1452,
15
, pp
457
485
.
16.
Lukaszewicz
,
G.
, 1999,
Micropolar Fluids-Theory and Applications
, Birkhauser, Boston.
17.
Kim
,
Y. J.
, and
Fedorov
,
A. G.
, 2003, “
Transient Mixed Radiative Convection Flow of a Micropolar Fluid Past a Moving, Semi-Infinite Vertical Porous Plate
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1751
1758
.
18.
Kim
,
Y. J.
, 2001, “
Unsteady MHD Micropolar Flow and Heat Transfer Over a Vertical Porous Moving Plate With Variable Suction
,”
Proceedings 2nd International Conference on Computational Heat and Mass Transfer
, COPPA/UFRJ- Federal University of Rio de Janerio, Brazil, October,
22
26
.
19.
Puri
,
P.
, and
Jordan
,
P. M.
, 1999, “
Wave Structure in Stokes’ Second Problem for a Dipolar Fluid With Nonclasical Heat Conduction
,”
Acta Mech.
0001-5970,
133
, pp.
145
160
.
20.
Müller
,
I.
, and
Ruggeri
,
T.
, 1993, “
Extended Thermodynamics
,”
Springer Tracts in Natural Philosophy
, Vol.
37
,
C.
Truesdell
, ed.,
Springer-Verlag
, New York, p.
230
.
21.
Ahmadi
,
G.
, 1976, “
Self-Similar Solution of Incompressible Micropolar Boundary Layer Flow Over a Semi-Infinite Plate
,”
Int. J. Eng. Sci.
0020-7225,
14
, pp.
639
646
.
You do not currently have access to this content.