In this paper, a nonlinear theory applicable to the design of nanotube based devices is presented. The role of finite kinematics for a doubly clamped nanotube device is investigated. In particular, we analyze the continuous deformation and instability (pull in) of a clamped-clamped nanotube suspended over an electrode from which a potential differential is imposed. The transformation of an applied voltage into a nanomechanical deformation indeed represents a key step toward the design of innovative nanodevices. Likewise, accurate prediction of pull-in/pull-out voltages is highly needed. We show that an energy-based method can be conveniently used to predict the structural behavior and instability corresponding to the ON/OFF states of the device at the so-called pull-in voltage. The analysis reveals that finite kinematics effects can result in a significant increase of the pull-in voltage. This increase results from a ropelike behavior of the nanotube as a consequence of the stretching imposed by the actuation.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836
354
, pp.
56
-
58
.
2.
Fennimore
,
A. M.
,
Yuzvinsky
,
T. D.
,
Han
,
W.-Q.
,
Fuhrer
,
M. S.
,
Cumings
,
J.
, and
Zettl.
,
A.
, 2003, “
Rotational Actuators Based on Carbon Nanotubes
,”
Nature (London)
0028-0836,
424
, pp.
408
-
410
.
3.
Rueckes
,
T.
,
Kim
,
K.
,
Joselevich
,
E.
,
Tseng
,
G. Y.
,
Cheung
C.-L.
, and
Lieber
,
C. M.
, 2000, “
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing
,”
Science
0036-8075,
289
, pp.
94
-
97
.
4.
Kim
,
P.
, and
Lieber
,
C. M.
, 1999, “
Nanotube Nanotweezers
,”
Science
0036-8075,
286
, pp.
2148
-
2150
.
5.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M.-F.
, and
Ruoff
R. S.
, 2002, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
495
-
532
.
6.
Yu
,
M.-F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
R. S.
, 2000, “
Strength and Breaking Mechanics of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
0036-8075,
287
, pp.
637
-
640
.
7.
Treacy
,
M. M.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
, 1996, “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
0028-0836,
381
, pp.
678
-
680
.
8.
Chopra
,
N. G.
, and
Zettl
,
A.
, 1998, ”
Measurement of the Elasticity of a Multi-wall Boron Nitride Nanotube
,”
Solid State Commun.
0038-1098
105
, pp.
297
-
300
.
9.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1997, “
High Strain Rate Fracture and C-chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
8
, 1997, pp.
341
-
348
.
10.
Desquenes
,
M.
,
Rotkin
S. V.
, and
Alaru
,
N. R.
, 2002, “
Calculation of Pull-in Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches
,”
Nanotechnology
0957-4484
13
, pp.
120
-
131
.
11.
Kinaret
,
J.
,
Nord
,
T.
, and
Viefers
,
S.
, 2003, “
A Carbon-Nanotube-Based Nanorelay
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
1287
-
1289
.
12.
Desquenes
,
M.
,
Tang
,
Z.
, and
Aluru
,
N. R.
, 2000, “
Static and Dynamic Analysis of Carbon Nanotube-Based Switches
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
230
-
237
.
13.
Ke
,
C.–H.
,
Espinosa
,
H. D.
, and
Pugno
,
N.
, 2004, “
Numerical Analysis of Nanotube Based NEMS devices—Part II: Role of Finite Kinematics, Stretching, and Charge Concentrations
,”
ASME J. Appl. Mech.
(accepted for publication).
14.
Sathyamoorthy
,
M.
, 1998,
Nonlinear Analysis of Structures
,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.