In this paper, a homogeneous type of kinetic rate laws of local internal variables and its corresponding macroscopic behaviors, are explored within the framework of “normality structures” by Rice. Rice’s kinetic rate laws of local internal variables, with each rate being stress dependent only via its conjugate thermodynamic force, are corner stones of the normality structure. It is revealed in this paper that nonlinear phenomenological equations and Onsager reciprocal relations emerge naturally if each rate is a homogeneous function of degree q in its conjugate force. Furthermore, the nonlinear phenomenological coefficient matrix is identical to the Hessian matrix of the flow potential function in conjugate forces only scaled by q. It is further shown that the refined version of Griffith criterion proposed by Rice, (G2γ)ȧ0, can be derived from the normality structure with the homogeneous rate laws. Finally, some issues related to damage evolution laws have been discussed based on the remarkable properties.

1.
Rice
,
J. R.
, 1971, “
Inelastic Constitutive Relations for Solids: An Integral Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
433
455
.
2.
Rice
,
J. R.
, 1975, “
Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms
,”
Constitutive Equations in Plasticity
,
A. S.
Argon
, ed.,
MIT Press
, Cambridge, MA, pp.
23
79
.
3.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes, I, II
,”
Phys. Rev.
0031-899X,
37
, pp.
405
406
;
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes, I, II
,”
Phys. Rev.
0031-899X,
38
, pp.
2265
2279
.
4.
Rice
,
J. R.
, 1978, “
Thermodynamics of Quasi-Static Growth of Griffith Cracks
,”
J. Mech. Phys. Solids
0022-5096,
26
, pp.
61
78
.
5.
De Groot
,
S. R.
,
Mazur
,
P.
, 1962,
Non-equilibrium Thermodynamics
,
North-Holland
, Amsterdam.
6.
Ziegler
,
H.
, 1977,
An Introduction to Thermomechanics
,
North-Holland
, Amsterdam.
7.
Edelen
,
D. G. B.
, 1972, “
A Nonlinear Onsager Theory of Irreversibility
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
481
490
.
8.
Edelen
,
D. G. B.
, 1973, “
Asymptotic Stability, Onsager Fluxes and Reaction Kinetics
,”
Int. J. Eng.
1025-2495,
11
, pp.
819
839
.
9.
Ziegler
,
H.
,
Wehrli
,
C.
, 1987, “
On a Principle of Maximal Rate of Entropy Production
,”
J. Non-Equil. Thermodyn.
0304-0204,
12
, pp.
229
243
.
10.
Rajagopal
,
K. R.
,
Srinivasa
,
A. R.
, 1998, “
Mechanics of the Inelastic Behavior of Materials. II. Inelastic Response
,”
Int. J. Plast.
0749-6419,
14
, pp.
969
995
.
11.
Rajagopal
,
K. R.
,
Srinivasa
,
A. R.
, 2000, “
A Thermodynamic Framework for Rate-Type Fluid Models
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
88
, pp.
207
227
.
12.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
, 2004, “
On Thermomechanical Restrictions of Continua
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
, pp.
631
651
.
13.
Puzrin
,
A. M.
,
Houlsby
,
G. T.
, 2003, “
Rate-Dependent Hyperplasticity With Internal Functions
,”
J. Eng. Mech.
0733-9399,
129
, pp.
252
263
.
14.
Krajcinovic
,
D.
, 2000, “
Damage Mechanics: Accomplishments, Trends and Needs
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
267
277
.
15.
Lemaitre
,
J.
,
Desmorat
,
R.
,
Sauzay
,
M.
, 2000, “
Anisotropic Damage Law of Evolution
,”
Eur. J. Mech. A/Solids
0997-7538,
19
, pp.
187
208
.
16.
Maugin
,
G. A.
, 1999,
The Thermodynamics of Nonlinear Irreversible Behaviors
,
World Scientific
, Singapore.
17.
Valanis
,
K. C.
, 1971, “
A Theory of Viscoplasticity Without a Yield Surface, Part I. General Theory
,”
Arch. Mech.
0373-2029,
23
, pp.
517
533
.
18.
Valanis
,
K. C.
, 1975, “
On the Foundations of the Endochronic Theory of Viscoplasticity
,”
Arch. Mech.
0373-2029,
27
, pp.
857
868
.
19.
Delph
,
T. J.
, 1999, “
A Simple Model for Crack Growth in Creep Resistant Alloys
,”
Int. J. Fract.
0376-9429,
98
, pp.
77
86
.
20.
Ritchie
,
R. O.
,
Gilbert
,
C. J.
,
McNaney
,
J. M.
, 2000, “
Mechanics and Mechanisms of Fatigue Damage and Crack Growth in Advanced Materials
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
311
329
.
21.
Broek
,
D.
, 1987,
Elementary Engineering Fracture Mechanics
,
Martinus Nijhoff
, Dordrecht, The Netherlands.
22.
Yang
,
Q.
,
Tham
,
L. G.
,
Swoboda
,
G.
, 2002, “
Micromechanical Basis of Nonlinear Phenomenological Equations as Damage Evolution Laws
,”
Mech. Res. Commun.
0093-6413,
29
, pp.
131
136
.
23.
Yang
,
Q.
,
Tham
,
L. G.
,
Swoboda
,
G.
, 2004, “
Relationship Between Refined Griffith Criterion and Power Laws for Cracking
,”
Mech. Res. Commun.
0093-6413,
31
, pp.
429
434
.
24.
Chow
,
C. L.
,
Lu
,
T. J.
, 1989, “
On Evolution Laws of Anisotropic Damage
,”
Eng. Fract. Mech.
0013-7944,
34
, pp.
679
701
.
25.
Soh
,
C. K.
,
Liu
,
Y.
,
Yang
,
Y.
,
Dong
,
Y.
, 2003, “
A Displacement Equivalence-Based Damage Model for Brittle Materials—Part I: Theory
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
681
687
.
26.
Swoboda
,
G.
,
Yang
,
Q.
, 1999, “
An Energy-Based Damage Model of Geomaterials-II. Deduction of Damage Evolution Laws
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
1735
1755
.
27.
Yang
,
Q.
,
Zhou
,
W. Y.
,
Swoboda
,
G.
, 1999, “
Micromechanical Identification of Anisotropic Damage Evolution Laws
,”
Int. J. Fract.
0376-9429,
68
, pp.
740
750
.
You do not currently have access to this content.