Three-dimensional vibration solutions are presented for rectangular plates with mixed boundary conditions, based on the small strain linear elasticity theory. The analysis is focused on two kinds of rectangular plates, the boundaries of which are partially fixed while the others are free. One of those studied is a rectangular plate with partially fixed boundaries symmetrically arranged around four corners and the other one is a rectangular plate with partially fixed boundaries around one corner only. A global analysis approach is developed. The Ritz method is applied to derive the governing eigenvalue equation by minimizing the energy functional of the plate. The admissible functions for all displacement components are taken as a product of a characteristic boundary function and the triplicate Chebyshev polynomial series defined in the plate domain. The characteristic boundary functions are composed of a product of four components of which each corresponds to one edge of the plate. The R-function method is applied to construct the characteristic boundary function components for the edges with mixed boundary conditions. The convergence and comparison studies demonstrate the accuracy and correctness of the present method. The influence of the length of the fixed boundaries and the plate thickness on frequency parameters of square plates has been studied in detail. Some valuable results are given in the form of tables and figures, which can serve as the benchmark for the further research.

1.
Leissa
,
A. W.
,
1973
, “
The Free Vibrations of Rectangular Plates
,”
J. Sound Vib.
,
31
, pp.
257
293
.
2.
Gorman
,
D. J.
,
1995
, “
Free-Vibration of Orthotropic Cantilever Plates With Point Supports
,”
J. Eng. Mech.
,
121
, pp.
851
857
.
3.
Singhal
,
R. K.
, and
Gorman
,
D. J.
,
1997
, “
Free Vibration of Partially Clamped Rectangular Plates With and Without Rigid Point Supports
,”
J. Sound Vib.
,
203
, pp.
181
192
.
4.
Gorman
,
D. J.
,
1999
, “
Accurate Free Vibration Analysis of Point Supported Mindlin Plates by the Superposition Method
,”
J. Sound Vib.
,
219
, pp.
265
277
.
5.
Keer
,
L. M.
, and
Stahl
,
B.
,
1972
, “
Eigenvalue Problems of Rectangular Plates With Mixed Edge Conditions
,”
ASME J. Appl. Mech.
,
94
, pp.
513
520
.
6.
Narita
,
Y.
,
1981
, “
Application of a Series-Type Method to Vibration of Orthotropic Rectangular Plates With Mixed Boundary Conditions
,”
J. Sound Vib.
,
77
, pp.
345
355
.
7.
Torik
,
P. J.
,
1984
, “
A Variational Approach to the Dynamics of Structures Having Mixed or Discontinuous Boundary Conditions
,”
ASME J. Appl. Mech.
,
51
, pp.
831
836
.
8.
Fan
,
S. C.
, and
Cheung
,
Y. K.
,
1984
, “
Flexural Free Vibrations of Rectangular Plates With Complex Support Conditions
,”
J. Sound Vib.
,
93
, pp.
81
94
.
9.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
,
1993
, “
Roles of Domain Decomposition Method in Plate Vibrations: Treatment of Mixed Discontinuous Periphery Boundaries
,”
Int. J. Mech. Sci.
,
35
, pp.
615
632
.
10.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
,
1993
, “
Method of Domain Decomposition in Vibrations of Mixed Edge Anisotropic Plates
,”
Int. J. Solids Struct.
,
30
, pp.
3281
3301
.
11.
Su
,
G. H.
, and
Xiang
,
Y.
,
2002
, “
A Non-Discrete Approach for Analysis of Plates With Multiple Subdomains
,”
Eng. Struct.
,
24
, pp.
563
575
.
12.
Kim
,
C. S.
, and
Dickinson
,
S. M.
,
1987
, “
Flexural Vibration of Rectangular Plates With Point Supports
,”
J. Sound Vib.
,
115
, pp.
249
261
.
13.
Kitipornchai
,
S.
,
Xiang
,
Y.
, and
Liew
,
K. M.
,
1994
, “
Vibration Analysis of Corner Supported Mindlin Plates of Arbitrary Shape Using the Lagrange Multiplier Method
,”
J. Sound Vib.
,
173
, pp.
457
470
.
14.
Wei
,
G. W.
,
Zhao
,
Y. B.
, and
Xiang
,
Y.
,
2001
, “
The Determination of Natural Frequencies of Rectangular Plates With Mixed Boundary Conditions by Discrete Singular Convolution
,”
Int. J. Mech. Sci.
,
43
, pp.
1731
1746
.
15.
Liew
,
K. M.
,
Xiang
,
Y.
,
Kitipornchai
,
S.
, and
Lim
,
M. K.
,
1995
, “
Vibration of Mindlin Plates on Point Supports Using Constraint Functions
,”
J. Eng. Mech.
,
120
, pp.
499
513
.
16.
Laura
,
P. A. A.
, and
Gutierrez
,
R. H.
,
1994
, “
Analysis of Vibrating Rectangular Plates With Non-Uniform Boundary Conditions by Using the Differential Quadrature Method
,”
J. Sound Vib.
,
173
, pp.
702
706
.
17.
Liu
,
F.-L.
, and
Liew
,
K. M.
,
1999
, “
Analysis of Vibrating Thick Rectangular Plates With Mixed Boundary Constraints Using Differential Quadrature Element Method
,”
J. Sound Vib.
,
225
, pp.
915
934
.
18.
Srinivas
,
S.
,
Rao
,
C. V. J.
, and
Rao
,
A. K.
,
1970
, “
An Exact Analysis for Vibration of Simply-Supported Homogeneous and Laminated Thick Rectangular Plates
,”
J. Sound Vib.
,
12
, pp.
187
199
.
19.
Cheung
,
Y. K.
, and
Chakrabarti
,
S.
,
1972
, “
Free Vibration of Thick, Layered Rectangular Plates by a Finite Layer Method
,”
J. Sound Vib.
,
21
, pp.
277
284
.
20.
Hutchinson
,
J. R.
, and
Zillimer
,
S. D.
,
1983
, “
Vibration of a Free Rectangular Parallelepiped
,”
ASME J. Appl. Mech.
,
50
, pp.
123
130
.
21.
Fromme
,
A.
, and
Leissa
,
A. W.
,
1970
, “
Free Vibration of the Rectangular Parallelepiped
,”
J. Acoust. Soc. Am.
,
48
, pp.
290
298
.
22.
Malik
,
M.
, and
Bert
,
C. W.
,
1998
, “
Three-Dimensional Elasticity Solutions for Free Vibrations of Rectangular Plates by the Differential Quadrature Method
,”
Int. J. Solids Struct.
,
35
, pp.
299
319
.
23.
Liew
,
K. M.
, and
Teo
,
T. M.
,
1999
, “
Three-Dimensional Vibration Analysis of Rectangular Plates Based on Differential Quadrature Method
,”
J. Sound Vib.
,
220
, pp.
577
599
.
24.
Leissa
,
A. W.
, and
Zhang
,
Z. D.
,
1983
, “
On the Three-Dimensional Vibrations of the Cantilevered Rectangular Parallelepiped
,”
J. Acoust. Soc. Am.
,
73
, pp.
2013
2021
.
25.
Lim
,
C. W.
,
1999
, “
Three-Dimensional Vibration Analysis of a Cantilevered Parallelepiped: Exact and Approximate Solutions
,”
J. Acoust. Soc. Am.
,
106
, pp.
3375
3381
.
26.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
,
1993
, “
A Continuum Three-Dimensional Vibration Analysis of Thick Rectangular Plates
,”
Int. J. Solids Struct.
,
30
, pp.
3357
3379
.
27.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
,
1994
, “
Three-Dimensional Vibration Analysis of Rectangular Plates: Variance of Simple Support Conditions and Influence of In-Plane Inertia
,”
Int. J. Solids Struct.
,
31
, pp.
3233
3247
.
28.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
,
1995
, “
Free Vibration Studies on Stress-Free Three-Dimensional Elastic Solids
,”
ASME J. Appl. Mech.
,
62
, pp.
159
165
.
29.
Zhou
,
D.
,
Cheung
,
Y. K.
,
Au
,
F. T. K.
, and
Lo
,
S. H.
,
2002
, “
Three-Dimensional Vibration Analysis of Thick Rectangular Plates Using Chebyshev Polynomial and Ritz Method
,”
Int. J. Solids Struct.
,
39
, pp.
6339
6353
.
30.
Fox, L., and Parker, I. B., 1968, Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London.
31.
Rvachev
,
V. L.
, and
Sheiko
,
T. I.
,
1995
, “
R-Functions in Boundary Value Problems in Mechanics
,”
Appl. Mech. Rev.
,
48
, pp.
151
187
.
32.
Rvachev, V. L., 1982, Theory of R-Functions and Its Some Applications (in Russian), Nauk Dumka, Kiev.
33.
Zhou, D., 2003, “Three-Dimensional Vibration Analysis of Structural Elements Using Chebyshev–Ritz Method,” Ph.D. thesis, The University of Hong Kong, Hong Kong.
34.
G+D Computing Pty. Ltd., 1999, Using STRAND7, 1st ed., Sydney.
You do not currently have access to this content.