Abstract

A semi-infinite crack grows at a constant subcritical speed along the interface of rigidly bonded, dissimilar transversely isotropic, coupled thermoelastic half-spaces. Shear and normal loads that move on the crack faces drive the process. A dynamic steady state of plane strain is considered. Robust asymptotic full-field solutions for the related problem of translating interface disturbances are first obtained. These lead to coupled singular integral equations for the crack problem that are solved analytically. Expressions for the crack opening components and discontinuity in temperature between crack faces, the traction and temperature change ahead of the crack, and debonding energy rate are presented. These show that the critical crack speed is the minimum of the two Rayleigh speeds and, if it exists, the Stoneley speed. The case of zinc bonded to a thermally inert rigid solid is examined, and calculations for interface temperature change and debonding energy rate given. Apart from any fracture criterion, these parameters show sensitivity to crack speed and to the extent which compressive crack face loading dominates shear loading. Indeed, interface temperature change may decrease in magnitude with crack speed when shear loading dominates.

References

1.
England
,
A. H.
,
1965
, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
, pp.
400
402
.
2.
Erdogan
,
F.
,
1965
, “
Stress Distributions in Bonded Dissimilar Materials With Cracks
,”
ASME J. Appl. Mech.
,
32
, pp.
403
410
.
3.
Rice
,
J. R.
, and
Sih
,
G. C.
,
1965
, “
Plane Problems of Cracks in Dissimilar Materials
,”
ASME J. Appl. Mech.
,
32
, pp.
418
423
.
4.
Liu
,
C.
,
Huang
,
Y.
, and
Rosakis
,
A. J.
,
1995
, “
Shear Dominated Interfacial Crack Growth in a Bimaterial—II. Asymptotic Fields and Favorable Velocity Regimes
,”
J. Mech. Phys. Solids
,
43
, pp.
189
206
.
5.
Brock
,
L. M.
,
1976
, “
Interface Flaw Extension Under In-Plane Loadings
,”
Int. J. Eng. Sci.
,
14
, pp.
963
974
.
6.
Ting
,
T. C. T.
,
1990
, “
Interface Cracks in Anisotropic Materials
,”
J. Mech. Phys. Solids
,
38
, pp.
505
513
.
7.
Ni
,
L.
, and
Nemat-Nasser
,
S.
,
1991
, “
Interface Crack in Anisotropic Dissimilar Materials: An Analytic Solution
,”
J. Mech. Phys. Solids
,
39
, pp.
113
144
.
8.
Ni
,
L.
, and
Nemat-Nasser
,
S.
,
1992
, “
Interface Cracks in Anisotropic Dissimilar Materials: General Case
,”
Q. Appl. Math.
,
1
, pp.
305
322
.
9.
Brock
,
L. M.
,
2002
, “
Interface Crack Extension at any Constant Speed in Orthotropic or Transversely Isotropic Bimaterals—I. General Exact Solution
,”
Int. J. Solids Struct.
,
39
, pp.
1163
1182
.
10.
Brock
,
L. M.
, and
Hanson
,
M. T.
,
2002
, “
Interface Crack Extension at any Constant Speed in Orthotropic or Transversely Isotropic Bimaterials—II. Two Important Examples
,”
Int. J. Solids Struct.
,
39
, pp.
1183
1198
.
11.
Kraut
,
E. A.
,
1963
, “
Advances in the Theory of Anisotropic Elastic Wave Propagation
,”
Rev. Geophys.
,
1
, pp.
401
448
.
12.
Scott
,
R. A.
, and
Miklowitz
,
J.
,
1967
, “
Transient Elastic Waves in Anisotropic Plates
,”
ASME J. Appl. Mech.
,
34
, pp.
104
110
.
13.
Payton, R. G., 1983, Elastic Wave Propagation in Transversely Isotropic Materials, Martinus Nijhoff, The Hague.
14.
Lekhnitski, S. G., 1963, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco.
15.
Ting, T. C. T., 1995, Anisotropic Elasticity, Oxford Science, New York.
16.
Boley, B. A., and Weiner, J. W., 1985, Theory of Thermal Stresses, Krieger, Malabar, FL.
17.
Chadwick, P. C., 1960, “Thermoelasticity, the Dynamical Theory,” in Progress in Solid Mechanics, Sneddon, I. N. and Hill, R., North–Holland, Amsterdam, Vol. 1.
18.
van der Pol, B., and Bremmer, H., 1950, Operational Calculus Based on the Two-Sided Laplace Integral, Cambridge University Press, Cambridge, UK.
19.
Abramowitz, M. A., and Stegun, I. A. (eds.), 1972, Handbook of Mathematical Functions, Dover, New York.
20.
Brock
,
L. M.
,
2003
, “
Rapid Sliding Indentation With Friction on a Transversely Isotropic Thermoelastic Half-Space
,”
Int. J. Solids Struct.
,
40
, pp.
3195
3210
.
21.
Cagniard, L., 1962, The Reflection and Refraction of Progressive Seismic Waves, McGraw–Hill, New York.
22.
Achenbach, J. D., 1973, Wave Propagation in Elastic Solids, North–Holland, Amsterdam.
23.
Foster, R. M., and Peirce, B. O., 1956, A Short Table of Integrals, Blaisdell, Waltham, MA.
24.
Erdogan, F., 1976, “Mixed Boundary Value Problems in Mechanics,” in Mechanics Today, edited by Nemat-Nasser, S., Pergamon Press, NY, Vol. 4.
25.
Barnett
,
D. M.
,
Gavazza
,
S. D.
,
Lothe
,
J.
, and
Musgrave
,
M. J. P.
,
1985
, “
Considerations of the Existence of Interfacial (Stoneley) Waves in Bonded Anisotropic Elastic Half-Spaces
,”
Proc. R. Soc. London, Ser. A
,
402
, pp.
153
166
.
26.
Brock
,
L. M.
,
1997
, “
Some Results for Rayleigh and Stoneley Signals in Thermoelastic Solids
,”
Indian J. Pure Appl. Math.
,
28
, pp.
835
850
.
27.
Brock
,
L. M.
,
1999
, “
Rapid Crack Growth in a Thermoelastic Solid Under Mixed-Mode Thermomechanical Loading
,”
IMA J. Appl. Math.
,
62
, pp.
31
44
.
28.
Brock
,
L. M.
,
2000
, “
Partially-Coupled Integral Equations for a Dynamic Fracture Problem in Coupled Thermoelasticity
,”
J. Integral Equ. Appl.
,
12
, pp.
31
38
.
29.
Achenbach
,
J. D.
,
1970
, “
Extension of a Crack by a Shear Wave
,”
Z. Angew. Math. Phys.
,
21
, pp.
887
900
.
30.
Sharma
,
J. N.
, and
Sharma
,
P. K.
,
2002
, “
Free Vibration of Homogeneous Transversely Isotropic Cylindrical Panel
,”
J. Therm. Stresses
,
25
, pp.
169
182
.
31.
Huang
,
Y.
,
Wang
,
W.
,
Liu
,
C.
, and
Rosakis
,
A. J.
,
1998
, “
Intersonic Crack Growth in Bimaterial Interfaces: An Investigation of Crack Face Contact
,”
J. Mech. Phys. Solids
,
46
, pp.
2233
2259
.
32.
Brock
,
L. M.
,
2004
, “
Dynamic Fracture of Transversely Isotropic Coupled-Thermoelastic Solids: Wedging by a Cylinder With Friction
,”
J. Thermal Stresses
27
, pp.
1053
1073
.
You do not currently have access to this content.