We study the equilibrium stress field in an annulus composed of a material that admits stress-induced displacive phase transformation that preserves volume. A standard example is the austenite to martensite transformation in shape memory alloys. Attention is restricted to isothermal and axisymmetric load increase. The constitutive model follows a standard J2 formulation appropriate for small strains and incorporates a single internal variable (the martensite phase fraction). A plane-stress boundary value problem is analyzed so as to determine the partitioning of the annulus into regions of (pure) austenite, (pure) martensite, and austenite/martensite mixture. Structure maps are presented, giving concise descriptions of the phase partitioning as the loads increase.

1.
Birman
,
V.
,
1999
, “
Analysis of an Infinite Shape Memory Alloy Plate With a Circular Hole Subjected to Biaxial Tension
,”
Int. J. Solids Struct.
,
36
(
1
), pp.
167
178
.
2.
Birman
,
V.
,
1997
, “
Review of Mechanics of Shape Memory Alloy Structures
,”
Appl. Mech. Rev.
,
50
(
11
), pp.
629
645
.
3.
Bernardini, D., and Pence, T. J., 2002, “Shape-Memory Materials, Modeling,” Encyclopedia of Smart Materials, M. Schwartz, ed., J. Wiley & Sons, New York, pp. 964–979.
4.
Bondaryev
,
E. N.
, and
Wayman
,
C. M.
,
1988
, “
Some Stress-Strain-Temperature Relationships for Shape Memory Alloys
,”
Metall. Trans. A
,
19A
(
10
), pp.
2407
2413
.
5.
Gall
,
K.
,
Sehitoglu
,
H.
,
Maier
,
H. J.
, and
Jacobus
,
K.
,
1998
, “
Stress-Induced Martensitic Phase Transformation in Polycrystalline CuZnAl Shape Memory Alloys Under Different Stress States
,”
Metall. Mater. Trans. A
,
29A
(
3
), pp.
765
773
.
6.
Lim
,
T. J.
, and
McDowell
,
D. L.
,
1999
, “
Mechanical Behavior of an Ni-Ti Shape Memory Alloy Under Axial-Torsional Proportional and Nonproportional Loading
,”
ASME J. Eng. Mater. Technol.
,
121
(
1
), pp.
9
18
.
7.
Giannakopoulos
,
A. E.
, and
Olsson
,
M.
,
1993
, “
Axisymmetric Deformation of Transforming Ceramic Rings
,”
Mech. Mater.
,
16
(
3
), pp.
295
316
.
8.
Budiansky
,
B.
,
Hutchinson
,
J. W.
, and
Lambropoulos
,
J. C.
,
1983
, “
Continuum Theory of Dilitant Transformation Toughening in Ceramics
,”
Int. J. Solids Struct.
,
19
(
4
), pp.
337
355
.
9.
Nadai, A., 1950, Theory of Flow and Fracture of Solids, McGraw–Hill, New York, pp. 472–481.
10.
Chi
,
Y.
,
Pence
,
T. J.
, and
Tsai
,
H.
,
2003
, “
Plane Stress Analysis of a Shape Memory Annular Plate Subject to Edge Pressure
,”
J. Phys. IV
,
112
, pp.
245
248
.
11.
Briggs
,
J. P.
, and
Ostrowski
,
J. P.
,
2002
, “
Experimental Feedforward and Feedback Control of a One-Dimensional SMA Composite
,”
Smart Mater. Struct.
,
11
(
1
), pp.
9
23
.
12.
Qidwai
,
M. A.
, and
Lagoudas
,
D. C.
,
2000
, “
On Thermomechanics and Transformation Surfaces of Polycrystalline NiTi Shape Memory Alloy Material
,”
Int. J. Plast.
,
16
, pp.
1309
1343
.
13.
Briggs
,
J. P.
, and
Ponte Castaneda
,
P.
,
2002
, “
Variational Estimates for the Effective Response of Shape Memory Alloy Actuated Fiber Composites
,”
ASME J. Appl. Mech.
,
69
(
4
), pp.
470
480
.
14.
Delaey
,
L.
,
Krishnan
,
R. V.
,
Tas
,
H.
, and
Warlimont
,
H.
,
1974
, “
Review: Thermoelasticity, Pseudoelasticity and the Memory Effects Associated With Martensitic Transformations. Part 1: Structural and Microstructural Changes Associated With the Transformations
,”
J. Mater. Sci.
,
9
, pp.
1521
1535
.
15.
Liang
,
C.
, and
Rogers
,
C. A.
,
1990
, “
One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,”
J. Intell. Mater. Syst. Struct.
,
1
, pp.
207
234
.
16.
Ivshin
,
Y.
, and
Pence
,
T. J.
,
1994
, “
A Constitutive Model for Hysteretic Phase Transition Behavior
,”
Int. J. Eng. Sci.
,
32
(
4
), pp.
681
704
.
17.
Gillet
,
Y.
,
Meunier
,
M. A.
,
Brailovski
,
V.
,
Trochu
,
F.
,
Patoor
,
E.
, and
Berveiller
,
M.
,
1995
, “
Comparison of Thermomechanical Models for Shape Memory Alloy
,”
J. Phys. IV
,
5
(
C8
), pp.
1165
1170
.
18.
Budiansky
,
B.
,
1958
, “
Extension of Michell’s Theorem to Problems of Plasticity and Creep
,”
Q. Appl. Math.
,
16
, pp.
307
309
.
19.
Roberts, S. M., and Shipman, J. S., 1972, Two-Point Boundary Value Problems: Shooting Methods, American Elsevier, New York.
You do not currently have access to this content.