A new boundary element method (BEM) is developed for three-dimensional analysis of fiber-reinforced composites based on a rigid-inclusion model. Elasticity equations are solved in an elastic domain containing inclusions which can be assumed much stiffer than the host elastic medium. Therefore the inclusions can be treated as rigid ones with only six rigid-body displacements. It is shown that the boundary integral equation (BIE) in this case can be simplified and only the integral with the weakly-singular displacement kernel is present. The BEM accelerated with the fast multipole method is used to solve the established BIE. The developed BEM code is validated with the analytical solution for a rigid sphere in an infinite elastic domain and excellent agreement is achieved. Numerical examples of fiber-reinforced composites, with the number of fibers considered reaching above 5800 and total degrees of freedom above 10 millions, are solved successfully by the developed BEM. Effective Young’s moduli of fiber-reinforced composites are evaluated for uniformly and “randomly” distributed fibers with two different aspect ratios and volume fractions. The developed fast multipole BEM is demonstrated to be very promising for large-scale analysis of fiber-reinforced composites, when the fibers can be assumed rigid relative to the matrix materials.

1.
Mackerle
,
J.
,
1994
, “
Finite Element and Boundary Element Library for Composites—A Bibliography (1991–1993)
,”
Finite Elem. Anal. Design
,
17
, pp.
155
165
.
2.
Achenbach
,
J. D.
, and
Zhu
,
H.
,
1989
, “
Effect of Interfacial Zone on Mechanical Behavior and Failure of Fiber-Reinforced Composites
,”
J. Mech. Phys. Solids
,
37
, pp.
381
393
.
3.
Zhu
,
H.
, and
Achenbach
,
J. D.
,
1991
, “
Effect of Fiber-Matrix Interphase Defects on Microlevel Stress States at Neighboring Fibers
,”
J. Compos. Mater.
,
25
, pp.
224
238
.
4.
Gulrajani
,
S. N.
, and
Mukherjee
,
S.
,
1993
, “
Sensitivities and Optimal Design of Hexagonal Array Fiber Composites With Respect to Interphase Properties
,”
Int. J. Solids Struct.
,
30
, pp.
2009
2026
.
5.
Pan
,
L.
,
Adams
,
D. O.
, and
Rizzo
,
F. J.
,
1998
, “
Boundary Element Analysis for Composite Materials and a Library of Green’s Functions
,”
Comput. Struct.
,
66
, pp.
685
693
.
6.
Liu
,
Y. J.
,
Xu
,
N.
, and
Luo
,
J. F.
,
2000
, “
Modeling of Interphases in Fiber-Reinforced Composites Under Transverse Loading Using the Boundary Element Method
,”
J. Appl. Mech.
,
67
, pp.
41
49
.
7.
Liu
,
Y. J.
, and
Xu
,
N.
,
2000
, “
Modeling of Interface Cracks in Fiber-Reinforced Composites With the Presence of Interphases Using the Boundary Element Method
,”
Mech. Mater.
,
32
, pp.
769
783
.
8.
Chen
,
X. L.
, and
Liu
,
Y. J.
,
2001
, “
Multiple-Cell Modeling of Fiber-Reinforced Composites With the Presence of Interphases Using the Boundary Element Method
,”
Comput. Mater. Sci.
,
21
, pp.
86
94
.
9.
Dundurs
,
J.
, and
Markenscoff
,
X.
,
1989
, “
A Green’s Function Formulation of Anticracks and Their Interaction With Load-Induced Singularities
,”
J. Appl. Mech.
,
56
, pp.
550
555
.
10.
Hu
,
K. X.
, and
Chandra
,
A.
,
1993
, “
Interactions Among General Systems of Cracks and Anticracks—An Integral-Equation Approach
,”
J. Appl. Mech.
,
60
, pp.
920
928
.
11.
Hu
,
K. X.
, and
Huang
,
Y.
,
1993
, “
A Microcracked Solid Reinforced by Rigid-Line Fibers
,”
Compos. Sci. Technol.
,
49
, pp.
145
151
.
12.
Hu
,
K. X.
,
Chandra
,
A.
, and
Huang
,
Y.
,
1994
, “
On Crack, Rigid-Line Fiber, and Interface Interactions
,”
Mech. Mater.
,
19
, pp.
15
28
.
13.
Chandra
,
A.
,
Huang
,
Y.
,
Wei
,
X.
, and
Hu
,
K. X.
,
1995
, “
A Hybrid Micro-Macro BEM Formulation for Micro-Crack Clusters in Elastic Components
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
1215
1236
.
14.
Huang
,
Y.
,
Hu
,
K. X.
, and
Chandra
,
A.
,
1995
, “
Stiffness Evaluation for Solids Containing Dilute Distributions of Inclusions and Microcracks
,”
J. Appl. Mech.
,
62
, pp.
71
77
.
15.
Leite
,
L. G. S.
,
Coda
,
H. B.
, and
Venturini
,
W. S.
,
2003
, “
Two-Dimensional Solids Reinforced by Thin Bars Using the Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
27
, pp.
193
201
.
16.
Dong
,
C. Y.
,
Lo
,
S. H.
, and
Cheung
,
Y. K.
,
2003
, “
Interaction Between Cracks and Rigid-Line Inclusions by an Integral Equation Approach
,”
Comput. Mech.
,
31
, pp.
238
252
.
17.
Nishimura, N., and Liu, Y. J., 2004, “Thermal Analysis of Carbon-Nanotube Composites Using a Rigid-Line Inclusion Model by the Boundary Integral Equation Method,” Comput. Mech., (in press).
18.
Ingber
,
M. S.
, and
Papathanasiou
,
T. D.
,
1997
, “
A Parallel-Supercomputing Investigation of the Stiffness of Aligned, Short-Fiber-Reinforced Composites Using the Boundary Element Method
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
3477
3491
.
19.
Primo
,
A. R. M.
,
Wrobel
,
L. C.
, and
Power
,
H.
,
2000
, “
Boundary Integral Formulation for Slow Viscous Flow in a Deforming Region Containing a Solid Inclusion
,”
Eng. Anal. Boundary Elem.
,
24
, pp.
53
63
.
20.
Kit
,
H. S.
,
Mykhas’skiv
,
V. V.
, and
Khaj
,
O. M.
,
2002
, “
Analysis of the Steady Oscillations of a Plane Absolutely Rigid Inclusion in a Three-Dimensional Elastic Body by the Boundary Element Method
,”
J. Appl. Math. Mech.
,
66
, pp.
817
824
.
21.
Nishimura
,
N.
,
2002
, “
Fast Multipole Accelerated Boundary Integral Equation Methods
,”
Appl. Mech. Rev.
,
55
, pp.
299
324
.
22.
Greengard
,
L.
, and
Helsing
,
J.
,
1998
, “
On the Numerical Evaluation of Elastostatic Fields in Locally Isotropic Two-Dimensional Composites
,”
J. Mech. Phys. Solids
,
46
, pp.
1441
1462
.
23.
Greengard
,
L.
,
Kropinski
,
M. C.
, and
Mayo
,
A.
,
1996
, “
Integral Equation Methods for Stokes Flow and Isotropic Elasticity in the Plane
,”
J. Comput. Phys.
,
125
, pp.
403
414
.
24.
Helsing
,
J.
,
1995
, “
An Integral Equation Method for Elastostatics of Periodic Composites
,”
J. Mech. Phys. Solids
,
43
, pp.
815
828
.
25.
Greengard
,
L.
, and
Rokhlin
,
V.
,
1987
, “
A Fast Algorithm for Particle Simulations
,”
J. Comput. Phys.
,
73
, pp.
325
348
.
26.
Fu
,
Y.
,
Klimkowski
,
K. J.
,
Rodin
,
G. J.
,
Berger
,
E.
,
Browne
,
J. C.
,
Singer
,
J. K.
,
Geijn
,
R. A. V. D.
, and
Vemaganti
,
K. S.
,
1998
, “
A Fast Solution Method for Three-Dimensional Many-Particle Problems of Linear Elasticity
,”
Int. J. Numer. Methods Eng.
,
42
, pp.
1215
1229
.
27.
Peirce
,
A. P.
, and
Napier
,
J. A. L.
,
1995
, “
A Spectral Multipole Method for Efficient Solution of Large-Scale Boundary Element Models in Elastostatics
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
4009
4034
.
28.
Popov
,
V.
, and
Power
,
H.
,
2001
, “
An O(N) Taylor Series Multipole Boundary Element Method for Three-Dimensional Elasticity Problems
,”
Eng. Anal. Boundary Elem.
,
25
, pp.
7
18
.
29.
Nishimura
,
N.
,
Yoshida
,
K.
, and
Kobayashi
,
S.
,
1999
, “
A Fast Multipole Boundary Integral Equation Method for Crack Problems in 3D
,”
Eng. Anal. Boundary Elem.
,
23
, pp.
97
105
.
30.
Yoshida
,
K.
,
Nishimura
,
N.
, and
Kobayashi
,
S.
,
2001
, “
Application of Fast Multipole Galerkin Boundary Integral Equation Method to Crack Problems in 3D
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
525
547
.
31.
Lai
,
Y.-S.
, and
Rodin
,
G. J.
,
2003
, “
Fast Boundary Element Method for Three-Dimensional Solids Containing Many Cracks
,”
Eng. Anal. Boundary Elem.
,
27
, pp.
845
852
.
32.
Rizzo
,
F. J.
,
1967
, “
An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics
,”
Q. Appl. Math.
,
25
, pp.
83
95
.
33.
Rizzo
,
F. J.
,
Shippy
,
D. J.
, and
Rezayat
,
M.
,
1985
, “
A Boundary Integral Equation Method for Radiation and Scattering of Elastic Waves in Three Dimensions
,”
Int. J. Numer. Methods Eng.
,
21
, pp.
115
129
.
34.
Mukherjee, S., 1982, Boundary Element Methods in Creep and Fracture, Applied Science Publishers, NY.
35.
Banerjee, P. K., 1994, The Boundary Element Methods in Engineering, 2nd ed., McGraw–Hill, NY.
36.
Brebbia, C. A., and Dominguez, J., 1989, Boundary Elements—An Introductory Course, McGraw–Hill, NY.
37.
Kane, J. H., 1994, Boundary Element Analysis in Engineering Continuum Mechanics, Prentice–Hall, Englewood Cliffs, NJ.
38.
Takahashi, T., Kobayashi, S., and Nishimura, N., 1999, “Fast Multipole BEM Simulation of Overcoring in an Improved Conical-End Borehole Strain Measurement Method,” in Mechanics and Engineering—In Honor of Professor Qinghua Du’s 80th Anniversary, edited by Yao, Z. H., Tsinghua University Press, Beijing, pp. 120–127.
39.
Yoshida, K., 2001, “Applications of Fast Multipole Method to Boundary Integral Equation Method,” Ph.D. dissertation, Department of Global Environment Engineering, Kyoto University.
40.
Timoshenko, S. P., and Goodier, J. N., 1987, Theory of Elasticity, 3rd ed., McGraw–Hill, NY.
41.
Mura, T., 1987, Micromechanics of Defects in Solids, 2nd revised ed., Kluwer Academic, Dordrecht.
42.
Thostenson
,
E. T.
,
Ren
,
Z. F.
, and
Chou
,
T.-W.
,
2001
, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
61
, pp.
1899
1912
.
43.
Ruoff
,
R. S.
, and
Lorents
,
D. C.
,
1995
, “
Mechanical and Thermal Properties of Carbon Nanotubes
,”
Carbon
,
33
, pp.
925
930
.
44.
Lu
,
J. P.
,
1997
, “
Elastic Properties of Single and Multilayered Nanotubes
,”
J. Phys. Chem. Solids
,
58
, pp.
1649
1652
.
45.
Qian
,
D.
,
Dickey
,
E. C.
,
Andrews
,
R.
, and
Rantell
,
T.
,
2000
, “
Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites
,”
Appl. Phys. Lett.
,
76
, pp.
2868
2870
.
46.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
,
2002
, “
Effects of Nanotube Waviness on the Modulus of Nanotube-Reinforced Polymers
,”
Appl. Phys. Lett.
,
80
, pp.
4647
4649
.
47.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
,
2003
, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—I: Modulus Predictions Using Effective Nanotube Properties
,”
Compos. Sci. Technol.
,
63
, pp.
1689
1703
.
48.
Liu
,
Y. J.
, and
Chen
,
X. L.
,
2003
, “
Evaluations of the Effective Materials Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
,
35
, pp.
69
81
.
49.
Chen
,
X. L.
, and
Liu
,
Y. J.
,
2004
, “
Square Representative Volume Elements for Evaluating the Effective Material Properties of Carbon Nanotube-Based Composites
,”
Comput. Mater. Sci.
,
29
, pp.
1
11
.
You do not currently have access to this content.