A porothermoelastic solution of the general problem of the inclined borehole in a transversely isotropic porous material is presented herein and compared with the isotropic porothermoelastic solution. The governing equations are outlined for the case of general anisotropy and specialized for a transversely isotropic poroelastic material under nonhydrostatic and nonisothermal in situ conditions. A superposition scheme is employed to obtain the analytical solutions within the isotropic and transversely isotropic poromechanics theory. The borehole generator is assumed to coincide with the material axis of symmetry, in the case of transverse isotropy, yet subjected to a three-dimensional state of stress. A systematic analysis has been carried out to evaluate the effect of the anisotropy of the poromechanical material parameters as well as the thermal material properties on stress and pore pressure distributions and the potential impact on the overall stability of deep wellbore drilling.

1.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.
2.
Biot
,
M. A.
,
1955
, “
Theory of Elasticity and Consolidation of a Porous Anisotropic Solid
,”
J. Appl. Phys.
,
26
, pp.
182
185
.
3.
Bear
,
J.
, and
Corapcioglu
,
M. Y.
,
1981
, “
A Mathematical Model for Consolidation in a Thermoelastic Aquifer Due to Hot Water Injection or Pumping
,”
Water Resour. Res.
,
17
(
3
), pp.
723
736
.
4.
Kurashige
,
M.
,
1989
, “
A Thermoelastic Theory of Fluid-Filled Porous Materials
,”
Int. J. Solids Struct.
,
25
(
9
), pp.
1039
1052
.
5.
Coussy
,
O.
,
1989
, “
A General Theory of Thermoporoelastoplasticity for Saturated Porous Materials
,”
Transp. Porous Media
,
4
, pp.
281
293
.
6.
Coussy, O., 1995, Mechanics of Porous Continua, Wiley, New York.
7.
Katsube
,
N.
,
1988
, “
The Anisotropic Thermomechanical Constitutive Theory for Fluid-Filled Porous Materials With Solid/Fluid Outer Boundaries
,”
Int. J. Solids Struct.
,
24
(
4
), pp.
375
380
.
8.
Utsugida, Y., 1985, “Coupled Analysis of Flow and Heat Around a High-Level Nuclear Waste Repository,” in Proc. 5th Int. Conf. Numerical Methods in Geomechanics, Nagoya, Balkema, Rotterdam, pp. 711–716.
9.
Brownell
, Jr.,
D. H.
,
Garg
,
S. K.
, and
Pritchett
,
J. W.
,
1977
, “
Governing Equations for Geothermal Reservoirs
,”
Water Resour. Res.
,
13
, pp.
929
934
.
10.
Rice
,
J. R.
, and
Cleary
,
M. P.
,
1976
, “
Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys. Space Phys.
,
14
(
4
), pp.
227
241
.
11.
Thompson
,
M.
, and
Willis
,
J. R.
,
1991
, “
A Reformulation of the Equations of Anisotropic Poroelasticity
,”
ASME J. Appl. Mech.
,
58
, pp.
612
616
.
12.
Wang, H., 2000, Theory of Linear Poroelasticity With Applications to Geomechanics and Hydrogeology, Princeton University Press, Princeton.
13.
Booker
,
J. R.
, and
Savvidou
,
C.
,
1984
, “
Consolidation Around a Spherical Heat Source
,”
Int. J. Solids Struct.
,
20
, pp.
1079
1090
.
14.
Booker
,
J. R.
, and
Savvidou
,
C.
,
1985
, “
Consolidation Around a Point Heat Source
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
9
, pp.
173
184
.
15.
McTigue
,
D. F.
,
1986
, “
Thermoelastic Response of Fluid-Saturated Porous Rock
,”
J. Geophys. Res.
,
91
(
B9
), pp.
9533
9542
.
16.
McTigue
,
D. F.
,
1990
, “
Flow to a Heated Borehole in Porous, Thermoelastic Rock: Analysis
,”
Water Resour. Res.
,
26
(
8
), pp.
1763
1774
.
17.
Kurashige
,
M.
,
1992
, “
Thermal Stresses of a Fluid-Saturated Poroelastic Hollow Cylinder
,”
JSME Int. J.
,
35
(
4
), pp.
386
391
.
18.
Kodashima
,
T.
, and
Kurashige
,
M.
,
1996
, “
Thermal Stresses in a Fluid-Saturated Poroelastic Hollow Sphere
,”
J. Therm. Stresses
,
19
, pp.
139
151
.
19.
Cheng
,
A. H.-D.
,
1998
, “
Material Coefficients of Anisotropic Poroelasticity
,”
Int. J. Rock Mech. Min. Sci.
,
34
, pp.
183
193
.
20.
Abousleiman, Y., and Cui, L., 2000, “The Theory of Anisotropic Poroelasticity With Applications,” Modeling and Applications in Geomechanics, edited by M. Zaman, J. Booker, and G. Gioda, Wiley, New York.
21.
Abousleiman
,
Y.
,
Cheng
,
A. H.-D.
,
Cui
,
L.
,
Detournay
,
E.
, and
Roegiers
,
J.-C.
,
1996
, “
Mandel’s Problem Revisited
,”
Geotechnique
,
46
(
2
), pp.
187
195
.
22.
Abousleiman
,
Y.
, and
Cui
,
L.
,
1998
, “
Poroelastic Solutions in Transversely Isotropic Media for Wellbore and Cylinder
,”
Int. J. Solids Struct.
,
35
(
34/35
), pp.
4905
4929
.
23.
Li
,
X.
,
1992
, “
A Generalized Theory of Thermoelasticity for an Anisotropic Medium
,”
Int. J. Eng. Sci.
,
30
(
5
), pp.
571
577
.
24.
Sharma
,
J. N.
, and
Kumar
,
V.
,
1996
, “
On the Axisymmetric Problems of Generalized Anisotropic Thermoelasticity
,”
J. Therm. Stresses
,
19
, pp.
781
794
.
25.
Sharma
,
J. N.
, and
Kumar
,
V.
,
1997
, “
Plane Strain Problems of Transverse Isotropic Thermoelastic Media
,”
J. Therm. Stresses
,
20
, pp.
463
476
.
26.
Nowacki, W., 1962, Thermoelasticity, Addison-Wesley, Reading, MA.
27.
Nowinski, J. L., 1978, Theory of Thermoelasticity With Applications, Sijthoff & Noordhoff, Groningen.
28.
Ekbote, S., Abousleiman, Y., and Zaman, M. M., 2000, “Porothermoelastic Solution for an Inclined Borehole in Transversely Isotropic Porous Media,” Fourth North American Rock Mechanics Symposium. Seattle, WA, Sept. 5–10.
29.
Ekbote, S., 2002, “Poromechanics Wellbore Stability: Theory and Applications,” Ph.D. dissertation, The University of Oklahoma.
30.
Abousleiman, Y., and Ekbote, S., 1999, “Porothermoelasticity in Transversely Isotropic Porous Materials,” The IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials. Stuttgart, Germany, Sept. 5–10, pp. 145–152.
31.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New York.
32.
Cui
,
L.
,
Cheng
,
A. H.-D.
, and
Abousleiman
,
Y.
,
1997
, “
Poroelastic Solution of an Inclined Borehole
,”
ASME J. Appl. Mech.
,
64
, pp.
32
38
.
33.
Cheng
,
A. H.-D.
,
1997
, “
On Generalized Plane Strain Poroelasticity
,”
Int. J. Rock Mech. Min. Sci.
,
35
, pp.
199
205
.
34.
Li
,
X.
,
Cui
,
L.
, and
Roegiers
,
J.-C.
,
1998
, “
Thermoporoelastic Modeling of Wellbore Stability in Non-Hydrostatic Stress Field
,”
Int. J. Rock Mech. Min. Sci.
,
34
(
3/4
), pp.
829
835
.
35.
Nair
,
R.
,
Abousleiman
,
Y.
, and
Zaman
,
M. M.
,
2002
, “
A Finite Element Porothermoelastic Model for Dual-Porosity Media
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
28
(
9
), pp.
875
898
.
36.
Carslaw, H. S., and Jaegar, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, New York.
1.
Stehfest
,
H.
,
1970
, “
Numerical Inversion of Laplace Transforms
,”
Commun. ACM
,
13
, pp.
47
49
;
2.
13
, p.
624
624
.
You do not currently have access to this content.