Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, March 25, 2003, final revision, February 6, 2004. Associate Editor: I. Mezic.

In Lagrangian mechanics, under certain conditions, the Jacobi energy integral exists and plays a fundamental role (see 1,2,3,4,5,6). More generally, when Jacobi’s integral does not exist, it is still possible to gain useful engineering information from a consideration of power versus rate-of-energy relations. In the present note, we are concerned with a system of N1 particles subject to general holonomic and non-holonomic constraints. The unconstrained physical system may be represented by an abstract particle P in a 3N-dimensional Euclidean configuration space. In the presence of holonomic constraints,...

1.
Whittaker, E. T., 1944, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Second Ed., Cambridge University Press, Cambridge, UK.
2.
Pars, L. A., 1965, A Treatise on Analytical Dynamics, Heinemann, London.
3.
Goldstein, H., 1980, Classical Mechanics, Second Ed., Addison-Wesley, Reading, MA.
4.
Greenwood, D. T., 1977, Classical Dynamics, Prentice-Hall, Englewood Cliffs, NJ.
5.
Rosenberg, R. M., 1977, Analytical Dynamics of Discrete Systems, Plenum Press, New York.
6.
Papastavridis, J. G., 2002, Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians, Oxford University Press, Oxford, UK.
7.
Hertz, H., 1900, The Principles of Mechanics Presented in a New Form, Macmillan, New York (Dover Publications, 1956).
8.
Synge
,
J. L.
,
1927
, “
On the Geometry of Dynamics
,”
Philos. Trans. R. Soc. London, Ser. A
,
226
, pp.
31
106
.
9.
Synge, J. L., 1936, Tensorial Methods in Dynamics (University of Toronto Studies, Applied Mathematics Series No. 2), University of Toronto Press, Toronto, Canada.
10.
Synge, J. L., and Schild, A., 1949, Tensor Calculus, University of Toronto Press, Toronto, Canada (Dover, 1978).
11.
Brillouin, L., 1964, Tensors in Mechanics and Elasticity, Academic Press, San Diego, CA.
12.
Papastavridis, J. G., 1999, Tensor Calculus and Analytical Dynamics, CRC Press, Boca Raton, FL.
13.
Casey
,
J.
,
1994
, “
Geometrical Derivation of Lagrange’s Equations
,”
Am. J. Phys.
,
62
, pp.
836
847
.
14.
Casey
,
J.
,
1995
, “
On the Advantages of a Geometrical Viewpoint in the Derivation of Lagrange’s Equations for a Rigid Continuum
,”
Z. Angew. Math. Phys.
,
46
(Special Issue), pp.
S805–S847
S805–S847
.
15.
Casey, J., and O’Reilly, O. M., 2004, “Geometrical Derivation of Lagrange’s Equations for a System of Rigid Bodies,” Math. Mech. Solids, in press.
16.
Casey
,
J.
,
2004
, “
Pseudo-Rigid Continua: Basic Theory and a Geometrical Derivation of Lagrange’s Equations
,”
Proc. R. Soc., London, Ser. A
,
460
, pp.
2021
2049
.
17.
Arnold, V. I., 1989, Mathematical Methods of Classical Mechanics, 2nd Ed., Springer-Verlag, New York.
18.
Abraham, R., and Marsden, J. E., 1978, Foundations of Mechanics, 2nd Ed., Addison-Wesley, Reading, MA.
19.
Guckenheimer, J., and Holmes, P., 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.
20.
Marsden, J. E., 1992, Lectures in Mechanics (London Mathematical Society Lecture Note Series, 174), Cambridge University Press, Cambridge, UK.
21.
Marsden, J. E., and Ratiu, T. S., 1999, Introduction to Mechanics and Symmetry, 2nd Ed., Springer-Verlag, New York.
22.
Hirsch
,
M. W.
,
1984
, “
The Dynamical Systems Approach to Differential Equations
,”
Bull. Am. Math. Soc.
,
11
, pp.
1
64
.
23.
Smale, S., 1980, The Mathematics of Time, Springer-Verlag, New York.
24.
Painleve´, P., 1895, Lec¸ons sur l’Inte´gration des Equations Diffe´rentielles de la Me´canique et Applications, A. Hermann, Paris.
25.
Painleve´, P., 1930, Cours de Me´canique, I, Gauthier-Villars et Cie., Paris.
26.
Appell, P., 1911, Traite´ de Me´canique Rationnelle, 2, Gauthier-Villars, Paris.
You do not currently have access to this content.