The classical formulation of Eshelby (Proc. Royal Society, A241, p. 376, 1957) for embedded inclusions is revisited and modified by incorporating the previously excluded surface/interface stresses, tension and energies. The latter effects come into prominence at inclusion sizes in the nanometer range. Unlike the classical result, our modified formulation renders the elastic state of an embedded inclusion size-dependent making possible the extension of Eshelby’s original formalism to nano-inclusions. We present closed-form expressions of the modified Eshelby’s tensor for spherical and cylindrical inclusions. Eshelby’s original conjecture that only inclusions of the ellipsoid family admit uniform elastic state under uniform stress-free transformation strains must be modified in the context of coupled surface/interface-bulk elasticity. We reach an interesting conclusion in that only inclusions with a constant curvature admit a uniform elastic state, thus restricting this remarkable property only to spherical and cylindrical inclusions. As an immediate consequence of the derivation of modified size-dependent Eshelby tensor for nano-inclusions, we also formulate the overall size-dependent bulk modulus of a composite containing such inclusions. Further applications are illustrated for size-dependent stress concentrations on voids and opto-electronic properties of embedded quantum dots.

1.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
A241
, pp.
376
396
.
2.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, Hague, Netherlands.
3.
Eshelby
,
J. D.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, Ser. A
,
A252
, pp.
561
569
.
4.
Eshelby, J. D., 1961, “Elastic Inclusions and Inhomogeneities,” Progress in Solid Mechanics 2, I. N. Sneddon and R. Hill, eds., North Holland, Amsterdam, pp. 89–140.
5.
Ru
,
C. Q.
,
2003
, “
Eshelby Inclusion of Arbitrary Shape in an Anisotropic Plane or Half-Plane
,”
Acta Mech.
,
160
(
3–4
), pp.
219
234
.
6.
Li
,
J. Y.
, and
Dunn
,
M. L.
,
1998
, “
Anisotropic Coupled-Field Inclusion and Inhomogeneity Problems
,”
Philos. Mag. A
,
77
(
5
), pp.
1341
1350
.
7.
Pan
,
E.
, and
Yang
,
B.
,
2001
, “
Elastostatic Fields in an Anisotropic Substrate due to a Buried Quantum Dot
,”
J. Appl. Phys.
,
90
(
12
), pp.
6190
6196
.
8.
Faux
,
D. A.
, and
Pearson
,
G. S.
,
2000
, “
Green’s Tensors for Anisotropic Elasticity: Application to Quantum Dots
,”
Phys. Rev. B
,
62
(
8
), pp.
R4798–R4801
R4798–R4801
.
9.
Chiu
,
Y. P.
,
1977
, “
On the Stress Field due to Initial Strains in Cuboid Surrounded by an Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44
, pp.
587
590
.
10.
Rodin
,
G. J.
,
1996
, “
Eshelby’s Inclusion Problem for Polygons and Polyhedra
,”
J. Mech. Phys. Solids
,
44
(
12
), p.
1977
1977
.
11.
Nozaki
,
H.
, and
Taya
,
M.
,
2001
, “
Elastic Fields in a Polyhedral Inclusion With Uniform Eigenstrains and Related Problems
,”
ASME J. Appl. Mech.
,
68
,
441
441
.
12.
Furuhashi
,
R.
,
Huang
,
J. H.
, and
Mura
,
T.
,
1992
, “
Sliding Inclusions and Inhomogeneities With Frictional Interfaces
,”
ASME J. Appl. Mech.
,
59
, pp.
783
788
.
13.
Ru
,
C. Q.
, and
Schiavone
,
P.
,
1997
, “
A Circular Inclusion With Circumferentially Inhomogeneous Interface in Antiplane Shear
,”
Proc. R. Soc. London, Ser. A
,
A453
, pp.
2551
2572
.
14.
Zhong
,
Z.
, and
Meguid
,
S. A.
,
1996
, “
On the Eigenstrain Problem of a Spherical Inclusion With an Imperfectly Bonded Interface
,”
ASME J. Appl. Mech.
,
63
, pp.
877
883
.
15.
Qu
,
J.
,
1993
, “
Effects of Slightly Weakened Interfaces on the Overall Elastic Properties of Composite Materials
,”
Mech. Mater.
,
14
, pp.
269
281
.
16.
Qu
,
J.
,
1993
, “
Eshelby Tensor for an Elastic Inclusion With Slightly Weakened Interface
,”
ASME J. Appl. Mech.
,
60
, pp.
1048
1050
.
17.
Kouris
,
D. A.
,
Tsuchida
,
E.
, and
Mura
,
T.
,
1986
, “
An Anomaly of Sliding Inclusions
,”
ASME J. Appl. Mech.
,
53
, pp.
724
726
.
18.
Walpole
,
L. J.
,
1978
, “
Coated Inclusion in an Elastic Medium
,”
Proc. Cambridge Philos. Soc.
,
83
, pp.
495
506
.
19.
Luo
,
H. A.
, and
Weng
,
G. J.
,
1989
, “
On Eshelby’s S-Tensor in Three Phase Cylindrically Concentric Solid
,”
Mech. Mater.
,
8
(
2–3
), pp.
77
88
.
20.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
,
1994
, “
Micromechanical Approach of the Coated Inclusion Problem and Applications to Composite Problems
,”
J. Eng. Mater. Technol.
,
116
(
3
), pp.
274
278
.
21.
Taya
,
M.
,
1999
, “
Micromechanics Modeling of Smart Composites
,”
Composites
,
30A
(
4
), pp.
531
536
.
22.
Ru
,
C. Q.
,
2000
, “
Eshelby’s Problem for Two-Dimensional Piezoelectric Inclusions of Arbitrary Shape
,”
Proc. R. Soc. London, Ser. A
,
456
(
1997
), pp.
1051
1068
.
23.
Deng
,
W.
, and
Meguid
,
S. A.
,
1999
, “
Closed Form Solutions for Partially Debonded Circular Inclusion in Piezoelectric Materials
,”
Acta Mech.
,
137
(
3–4
), pp.
167
181
.
24.
Mikata
,
Y.
,
2001
, “
Explicit Determination of Piezoelectric Eshelby Tensors for a Spheroidal Inclusion
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7045
7063
.
25.
Pan
,
E.
,
2002
, “
Elastic and Piezoelectric Fields Around a Quantum Dot: Fully Coupled or Semicoupled Model?
J. Appl. Phys.
,
91
(
6
), pp.
3785
3796
.
26.
Pan
,
E.
,
2002
, “
Three-Dimensional Green’s Functions in Anisotropic Magneto-Electro-Elastic Bimaterials
,”
Z. Angew. Math. Phys.
,
53
(
5
), pp.
815
838
.
27.
Sendeckyi, G. P., 1967, “Ellipsoidal Inhomogeneity Problem,” Ph.D. dissertation, Northwestern University, Evanston, IL.
28.
Moschovidis, Z. A., 1975, “Two Ellipsoidal Inhomogeneities and Related Problems Treated by the Equivalent Inclusion Method,” Ph.D thesis, Northwestern University, Evanston, IL.
29.
Asaro
,
R. J.
, and
Barnett
,
D. M.
,
1975
, “
The Non-uniform Transformation Strain Problem for an Anisotropic Ellipsoidal Inclusion
,”
J. Mech. Phys. Solids
,
23
, pp.
77
83
.
30.
Mura
,
T.
, and
Kinoshita
,
N.
,
1978
, “
The Polynomial Eigenstrain Problem or an Anisotropic Ellipsoidal Inclusion
,”
Phys. Status Solidi A
,
48
, pp.
447
450
.
31.
Rahman
,
M.
,
2002
, “
The Isotropic Ellipsoidal Inclusion With a Polynomial Distribution of Eigenstrain
,”
ASME J. Appl. Mech.
,
69
, pp.
593
601
.
32.
Eringen, A. C., 1999, Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York.
33.
Cheng
,
Z. Q.
, and
He
,
L. H.
,
1995
, “
Micropolar Elastic Fields due to a Spherical Inclusion
,”
Int. J. Eng. Sci.
,
33
(
3
), pp.
389
397
.
34.
Cheng
,
Z. Q.
, and
He
,
L. H.
,
1997
, “
Micropolar Elastic Fields due to a Circular Cylindrical Inclusion
,”
Int. J. Eng. Sci.
,
35
(
7
), pp.
659
686
.
35.
Sharma
,
P.
, and
Dasgupta
,
A.
,
2002
, “
Average Elastic Fields and Scale-Dependent Overall Properties of Heterogeneous Micropolar Materials Containing Spherical and Cylindrical Inhomogeneities
,”
Phys. Rev. B
,
66
, p.
224110
224110
.
36.
Nemat-Nasser, S., and Hori, M., 1999, Micromechanics: Overall Properties of Heterogeneous Solids, Elsevier, New York.
37.
Markov, K., and Preziosi, L., 2000, Heterogeneous Media: Micromechanics Modeling Methods and Simulations, Birkhauser Verlag, Switzerland.
38.
Weng, G. J., Taya, M., and Abe, H., eds, 1990, Micromechanics and Inhomogeneity: The Toshio Mura Anniversary Volume, Springer-Verlag, New York.
39.
Bilby, B. A., Miller, K. J., and Willis, J. R., 1984, IUTAM/IFC/ICM Symposium on Fundamentals of Deformation and Fracture, Sheffield, England, Apr. 2–5, Eshelby Memorial Symposium, Cambridge University Press, Cambridge, UK.
40.
Mura
,
T.
,
Shodja
,
H. M.
, and
Hirose
,
Y.
,
1996
, “
Inclusion problems
,”
Appl. Mech. Rev.
,
49
(
10
), Part 2, pp.
S118–S127
S118–S127
.
41.
Ibach
,
H.
,
1997
, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures
,”
Surf. Sci. Rep.
,
29
(
5–6
), pp.
193
263
.
42.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), pp.
139
147
.
43.
Gurtin
,
M. E.
, and
Murdoch
A. I.
,
1978
, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
431
440
.
44.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larche
,
F.
,
1998
, “
The General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
,
78
, p.
1093
1093
.
45.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
,
59
, p.
389
389
.
46.
Cahn
,
J. W.
, and
Larche
,
F.
,
1982
, “
Surface Stress and the Chemical Equilibrium of Small Crystals. II. Solid Particles Embedded in a Solid Matrix
,”
Acta Metall.
,
30
(
1
), pp.
51
56
.
47.
Bimberg, D., Grundmann, M., and Lendenstov, N. N., 1996, Quantum Dot Heterostructures, John Wiley and Sons, New York.
48.
Freund
,
L. B.
, and
Johnson
,
H. T.
,
2001
, “
Influence of Strain on Functional Characteristics of Nanoelectronic Devices
,”
J. Mech. Phys. Solids
,
49
, pp.
1925
1935
.
49.
Johnson
,
H. T.
, and
Freund
,
L. B.
,
2001
, “
The Influence of Strain on Confined Electronic States in Semiconductor Quantum Structures
,”
Int. J. Solids Struct.
,
38
, pp.
1045
1062
.
50.
Singh, J., 1992, Physics of Semiconductors & Their Heterostructures, McGraw-Hill, New York.
51.
Brus
,
L. E.
,
1984
, “
Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size-Dependence of the Lowest Excited Electronic State
,”
J. Chem. Phys.
,
80
(
9
), p.
4403
4403
.
52.
LeBoeuf, S., 2003, private communication.
53.
Mohammad
,
S. N.
, and
Morkoc
,
H.
,
1996
, “
Progress and Prospects of Group-III Nitride Semiconductors
,”
Prog. Quantum Electron.
,
20
, p.
361
361
.
54.
Shur
,
M. S.
, and
Khan
,
M. A.
,
1997
, “
GaN/AlGaN Heterostructure Devices: Photodetectors and Field-Effect Transistors
,”
Mater. Res. Bull.
,
22
(
2
), p.
44
44
.
55.
Chin
,
V. W. L.
,
Tansley
,
T. L.
, and
Osotchan
,
T.
,
1994
, “
Electron Mobilities in Gallium, Indium, and Aluminum nitrides
,”
J. Appl. Phys.
,
75
, p.
7365
7365
.
56.
Tiersten
,
H. F.
,
1969
, “
Elastic Surface Waves Guided by Thin Films
,”
J. Appl. Phys.
,
40
, p.
770
770
.
You do not currently have access to this content.