The classical formulation of Eshelby (Proc. Royal Society, A241, p. 376, 1957) for embedded inclusions is revisited and modified by incorporating the previously excluded surface/interface stresses, tension and energies. The latter effects come into prominence at inclusion sizes in the nanometer range. Unlike the classical result, our modified formulation renders the elastic state of an embedded inclusion size-dependent making possible the extension of Eshelby’s original formalism to nano-inclusions. We present closed-form expressions of the modified Eshelby’s tensor for spherical and cylindrical inclusions. Eshelby’s original conjecture that only inclusions of the ellipsoid family admit uniform elastic state under uniform stress-free transformation strains must be modified in the context of coupled surface/interface-bulk elasticity. We reach an interesting conclusion in that only inclusions with a constant curvature admit a uniform elastic state, thus restricting this remarkable property only to spherical and cylindrical inclusions. As an immediate consequence of the derivation of modified size-dependent Eshelby tensor for nano-inclusions, we also formulate the overall size-dependent bulk modulus of a composite containing such inclusions. Further applications are illustrated for size-dependent stress concentrations on voids and opto-electronic properties of embedded quantum dots.
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS. Manuscript received by the ASME Applied Mechanics Division, November 25, 2003; final revision, February 13, 2004. Editor: R. M. McMeeking. Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mechanics, Department of Mechanical and Environmental Engineering University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Sharma, P., and Ganti, S. (November 9, 2004). "Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies ." ASME. J. Appl. Mech. September 2004; 71(5): 663–671. https://doi.org/10.1115/1.1781177
Download citation file: