This paper examines applicability and limitations of simplified models of elastic cylindrical shells for carbon nanotubes. The simplified models examined here include Donnell equations and simplified Flugge equations characterized by an uncoupled single equation for radial deflection. These simplified elastic shell equations are used to study static buckling and free vibration of carbon nanotubes, with detailed comparison to exact Flugge equations of cylindrical shells. It is shown that all three elastic shell models are in excellent agreement (with relative errors less than 5%) with recent molecular dynamics simulations for radial breathing vibration modes of carbon nanotubes, while reasonable agreements for various buckling problems have been reported previously for Donnell equations. For general cases of buckling and vibration, the results show that the simplified Flugge model, which retains mathematical simplicity of Donnell model, is consistently in better agreement with exact Flugge equations than Donnell model, and has a significantly enlarged range of applicability for carbon nanotubes. In particular, the simplified Flugge model is applicable for carbon nanotubes (with relative errors around 10% or less) in almost all cases of physical interest, including some important cases in which Donnell model results in much larger errors. These results are significant for further application of elastic shell models to carbon nanotubes because simplified shell models, characterized by a single uncoupled equation for radial deflection, are particularly useful for multiwall carbon nanotubes of large number of layers.

1.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M. F.
, and
Ruoff
,
R. S.
,
2002
, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
,
55
, pp.
495
533
.
2.
Huang, Y., and Wang, Z. L., 2003, “Mechanics of Nanotubes,” Comprehensive Structural Integrity Handbook, Elsevier, New York, 8, pp. 551–579.
3.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instability Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
, pp.
2511
2514
.
4.
Ru
,
C. Q.
,
2000
, “
Effective Bending Stiffness of Carbon Nanotubes
,”
Phys. Rev. B
,
62
, pp.
9973
9976
.
5.
Ru
,
C. Q.
,
2001
, “
Degraded Axial Buckling Strain of Multiwalled Carbon Nanotubes Due to Interlayer Slips
,”
J. Appl. Phys.
,
89
, pp.
3426
3433
.
6.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
,
R. M.
,
Chi
,
V.
,
Brooks
,
F. P.
,
Washburn
,
S.
, and
Superfine
,
R.
,
1997
, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature (London)
,
389
, pp.
582
584
.
7.
Ru
,
C. Q.
,
2000
, “
Elastic Buckling of Singlewalled Carbon Nanotube Ropes Under High Pressure
,”
Phys. Rev. B
,
62
, pp.
10405
10408
.
8.
Wang
,
C. Y.
,
Ru
,
C. Q.
, and
Miduchowski
,
A.
,
2003
, “
Elastic Buckling of Multiwall Carbon Nanotubes Under High Pressure
,”
J. Nanosci. Nanotech. (special issue on Nanotubes)
,
3
, pp.
199
208
.
9.
Wang
,
C. Y.
,
Ru
,
C. Q.
, and
Miduchowski
,
A.
,
2003
, “
Axially Compressed Buckling of Pressured Multiwall Carbon Nanotubes
,”
Int. J. Solids Struct.
,
40
, pp.
3893
3911
.
10.
Zhang
,
P.
,
Huang
,
Y.
,
Gao
,
H.
, and
Hwang
,
K. C.
,
2002
, “
Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension
,”
ASME J. Appl. Mech.
,
69
, pp.
454
458
.
11.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
,
2002
, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
,
65
, p.
235430
235430
.
12.
Donnell, L. H., 1976, Beams, Plates and Shells, McGraw-Hill, New York.
13.
Flugge, W., 1960, Stresses in Shells, Springer-Verlag, Berlin.
14.
Timoshenko, S. P., and Gere, J. M., 1961, Theory of Elastic Stability, McGraw-Hill, New York.
15.
Kraus, H., 1967, Thin Elastic Shells: An Introduction to the Theoretical Foundations and the Analysis of Their Static and Dynamic Behavior, John Wiley and Sons, New York.
16.
Markus, S., 1988, The Mechanics of Vibration of Cylindrical Shells, Elsevier, Amsterdam.
17.
Soedel, W., 1993, Vibrations of Shells and Plates, Marcel Dekker, New York.
18.
Kempner
,
J.
,
1955
, “
Remarks on Donnell’s Equation
,”
ASME J. Appl. Mech.
,
77
, pp.
117
118
.
19.
Hoff
,
N. J.
,
1955
, “
The Accuracy of Donnell’s Equation
,”
ASME J. Appl. Mech.
,
22
, pp.
329
334
.
20.
Morley
,
L. S. D.
,
1959
, “
An Improvement on Donnell’s Approximation for Thin-Walled Circular Cylinders
,”
Q. J. Mech. Appl. Math.
,
XII
, pp.
88
99
.
21.
Weaver
,
D. S.
, and
Unny
,
T. E.
,
1973
, “
On the Dynamic Stability of Fluid-Conveying Pipes
,”
ASME J. Appl. Mech.
,
40
, pp.
49
52
.
22.
Dym
,
C. L.
,
1973
, “
On the Buckling of Cylinders in Axial Compression
,”
ASME J. Appl. Mech.
,
40
, pp.
565
568
.
23.
Li
,
C.
, and
Chou
,
T. W.
,
2003
, “
A Structural Mechanics Approach for the Analysis of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
40
, pp.
2487
2499
.
24.
Chang
,
T.
, and
Gao
,
H.
,
2003
, “
Size-Dependence Elastic Properties of a Single-Wall Carbon Nanotube via a Molecular Mechanics Model
,”
J. Mech. Phys. Solids
,
51
, pp.
1059
1074
.
25.
Rao
,
A. M.
,
Richter
,
E.
,
Bandow
,
S.
,
Chase
,
B.
,
Eklund
,
P. C.
,
Williams
,
K. A.
,
Fang
,
S.
,
Subbaswamy
,
K. R.
,
Menon
,
M.
,
Thess
,
A.
,
Smalley
,
R. E.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
1997
, “
Diameter-Selective Raman Scattering From Vibrational Modes in Carbon Nanotubes
,”
Science
,
275
, pp.
187
191
.
26.
Bandow
,
S.
, and
Asaka
,
S.
,
1998
, “
Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes
,”
Phys. Rev. Lett.
,
80
, pp.
3779
3782
.
27.
Popov
,
V. N.
, and
Henrard
,
L.
,
2002
, “
Breathinglike Phonon Modes of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
65
, p.
235415
235415
.
28.
Mahan
,
G. D.
,
2002
, “
Oscillations of a Thin Hollow Cylinder: Carbon Nanotube
,”
Phys. Rev. B
,
65
, p.
235402
235402
.
29.
Greenspon
,
J. E.
,
1960
, “
Vibrations of a Thick-Walled Cylindrical Shell—Comparison of the Exact Theory With Approximate Theories
,”
J. Acoust. Soc. Am.
,
32
, pp.
571
578
.
30.
Forsberg
,
K.
,
1969
, “
Axisymmetric and Beam-Type Vibrations of Thin Cylindrical Shell
,”
AIAA J.
,
7
(
2
), pp.
221
227
.
31.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Miduchowski
,
A.
,
2002
, “
Non-coaxial Resonance of an Isolated Multiwall Carbon Nanotube
,”
Phys. Rev. B
,
66
, p.
233402
233402
.
32.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Miduchowski
,
A.
,
2003
, “
Vibration of Embedded Multiwall Carbon Nanotubes
,”
Compos. Sci. Technol.
,
63
, pp.
1533
1542
.
33.
Shayo
,
L. K.
, and
Ellen
,
C. H.
,
1978
, “
Theoretical Studies of Internal Flow-Induced Insensitivities of Cantilever Pipes
,”
J. Sound Vib.
,
56
, pp.
463
474
.
34.
El-Raheb
,
M.
, and
Babcock
,
C. D.
,
1981
, “
Some Approximations in the Linear Dynamic Equations of Thin Cylinders
,”
J. Sound Vib.
,
76
, pp.
543
559
.
You do not currently have access to this content.