A new zig-zag coupled theory is developed for hybrid cross-ply plates with some piezoelectric layers using third-order zig-zag approximation for the inplane displacements and sublayer wise piecewise linear approximation for the electric potential. The theory considers all electric field components and can model open and closed-circuit boundary conditions. The deflection field accounts for the transverse normal strain due to the piezoelectric d33 coefficient. The displacement field is expressed in terms of five displacement variables (which are the same as in FSDT) and electric potential variables by satisfying exactly the conditions of zero shear stresses at the top and bottom, and their continuity at layer interfaces. The governing equations are derived from the principle of virtual work. Comparison of the Navier solutions for the simply-supported plates with the analytical three-dimensional piezoelasticity solutions establishes that the present efficient zig-zag theory is quite accurate for moderately thick plates.

1.
Chopra
,
I.
,
2002
, “
Review of the State of Art of Smart Structures and Integrated Systems
,”
AIAA J.
,
40
, pp.
2145
2187
.
2.
Yu
,
Y. Y.
,
1995
, “
Some Recent Advances in Linear and Nonlinear Dynamical Modeling of Elastic and Piezoelectric Plates
,”
J. Intell. Mater. Syst. Struct.
,
6
, pp.
237
254
.
3.
Chee
,
C. Y. K.
,
Tong
,
L.
, and
Steven
,
G. P.
,
1998
, “
A Review on the Modeling of Piezoelectric Sensors and Actuators Incorporaed in Intelligent Structures
,”
J. Intell. Mater. Syst. Struct.
,
9
, pp.
3
19
.
4.
Saravanos
,
D. A.
, and
Heyliger
,
P. R.
,
1999
, “
Mechanics and Computational Models for Laminated Piezoelectric Beams, Plates, and Shells
,”
Appl. Mech. Rev.
,
52
, pp.
305
320
.
5.
Gopinathan
,
S. V.
,
Vardan
,
V. V.
, and
Vardan
,
V. K.
,
2000
, “
A Review and Critique of Theories for Piezoelectric Laminates
,”
Smart Mater. Struct.
,
9
, pp.
24
48
.
6.
Heyliger
,
P.
,
1994
, “
Static Behavior of Laminated Elastic/Piezoelectric Plates
,”
AIAA J.
,
32
, pp.
2481
2484
.
7.
Lee
,
J. S.
, and
Jiang
,
L. Z.
,
1996
, “
Exact Electroelastic Analysis of Piezoelectric Laminae via State Space Approach
,”
Int. J. Solids Struct.
,
32
, pp.
977
990
.
8.
Vel
,
S. S.
, and
Batra
,
R. C.
,
2000
, “
Three-Dimensional Analytical Solution for Hybrid Multilayered Piezoelectric Plates
,”
ASME J. Appl. Mech.
,
67
, pp.
558
567
.
9.
Ha
,
S. K.
,
Keilers
,
C.
, and
Chang
,
F. K.
,
1992
, “
Finite Element Analysis of Composite Structures Containing Distributed Piezoceramic Sensors and Actuators
,”
AIAA J.
,
30
, pp.
772
780
.
10.
Crawley
,
E. F.
, and
Lazarus
,
K. B.
,
1991
, “
Induced Strain Actuation of Isotropic and Anisotropic Plates
,”
AIAA J.
,
29
, pp.
944
951
.
11.
Wang
,
B. T.
, and
Rogers
,
C. A.
,
1991
, “
Laminate Plate Theory for Spatially Distributed Induced Strain Actuators
,”
J. Compos. Mater.
,
25
, pp.
433
452
.
12.
Yang
,
J. S.
,
1997
, “
Equations for Elastic Plates With Partially Electroded Piezoelectric Actuators in Flexure With Shear Deformation and Rotory Inertia
,”
J. Intell. Mater. Syst. Struct.
,
8
, pp.
444
451
.
13.
Chattopadhya
,
A.
, and
Seely
,
E.
,
1997
, “
A Higher Order Theory for Modeling Laminates With Induced Strain Actuators
,”
Composites, Part B
,
28B
, pp.
243
252
.
14.
Lee
,
C. K.
, and
Moon
,
F. C.
,
1989
, “
Laminated Piezopolymer Plates for Torsion and Bending Sensors and Actuators
,”
J. Acoust. Soc. Am.
,
85
, pp.
2432
2439
.
15.
Lee
,
C. K.
,
1990
, “
Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators. Part 1: Governing Equations and Reciprocal Relationships
,”
J. Acoust. Soc. Am.
,
87
, pp.
1144
1158
.
16.
Tzou
,
H. S.
,
1989
, “
Distributed Sensing and Controls of Flexible Plates and Shells Using Distributed Piezoelectric Element
,”
J. Wave Mat. Interact.
,
4
, pp.
11
29
.
17.
Hwang
,
W. S.
, and
Park
,
H. C.
,
1993
, “
Finite Element Modelling of Piezoelectric Sensors and Actuators
,”
AIAA J.
,
31
, pp.
930
937
.
18.
Chandrashekhra
,
K.
, and
Agarwal
,
A. N.
,
1993
, “
Active Vibration Control of Laminated Composite Plates Using Piezoelectric Devices: A Finite Element Approach
,”
J. Intell. Mater. Syst. Struct.
,
4
, pp.
496
508
.
19.
Jonnalagadda
,
K. D.
,
Blandford
,
G. E.
, and
Tauchert
,
T. R.
,
1994
, “
Piezothermoelastic Composite Plate Analysis Using First Order Shear Deformation Theory
,”
Comput. Struct.
,
51
, pp.
79
89
.
20.
Chattopadhya
,
A.
,
Gu
,
H.
, and
Dragomir-Daescu
,
D.
,
1999
, “
Dynamics of Delaminated Composite Plates With Piezoelectric Actuators
,”
AIAA J.
,
37
, pp.
248
254
.
21.
Vel
,
S. S.
, and
Batra
,
R. C.
,
2001
, “
Analysis of Piezoelectric Bimorphs and Plates With Segmented Actuators
,”
Thin-Walled Struct.
,
39
, pp.
23
44
.
22.
Detwiler
,
J. C.
,
Shen
,
M. H.
, and
Venkaya
,
V. B.
,
1995
, “
Finite Element Analysis of Laminated Composite Structures Containing Distributed Piezoelectric Actuators and Sensors
,”
Finite Elem. Anal. Design
,
20
, pp.
87
100
.
23.
Yu
,
J. W.
,
Kang
,
W. Y.
, and
Kim
,
S. J.
,
1995
, “
Elastic tailoring of Laminated Composite Plate by Anisotropic Piezoelectric Polymers—Theory, Computation, and Experiment
,”
J. Compos. Mater.
,
29
, pp.
1201
1221
.
24.
Huang
,
J. H.
, and
Wu
,
T. L.
,
1996
, “
Analysis of Hybrid Multilayered Piezoelectric Plates
,”
Int. J. Eng. Sci.
,
34
, pp.
171
181
.
25.
Saravanos
,
D. A.
,
1997
, “
Coupled Mixed-Field Laminate Theory and Finite Element for Smart Piezo-Electric Composite Shell Structures
,”
AIAA J.
,
35
, pp.
1327
1333
.
26.
Kapuria
,
S.
, and
Dumir
,
P. C.
,
2000
, “
Coupled FSDT for Piezothermoelastic Hybrid Rectangular Plate
,”
Int. J. Solids Struct.
,
37
, pp.
6131
6153
.
27.
Mitchell
,
J. A.
, and
Reddy
,
J. N.
,
1995
, “
A Refined Hybrid Plate Theory for Composite Laminates With Piezoelectric Laminae
,”
Int. J. Solids Struct.
,
32
, pp.
2345
2367
.
28.
Chattopadhyay
,
A.
,
Li
,
J.
, and
Gu
,
H.
,
1999
, “
Coupled Piezoelectric Mechanical Model for Smart Composite Laminates
,”
AIAA J.
,
37
, pp.
1633
1638
.
29.
Robbins
,
D. H.
, and
Reddy
,
J. N.
,
1991
, “
Analysis of Piezoelectrically Actuated Beams Using a Layerwise Displacement Theory
,”
Comput. Struct.
,
41
, pp.
265
279
.
30.
Heyliger
,
P. R.
,
Ramirez
,
G.
, and
Saravanos
,
D. A.
,
1994
, “
Coupled Discrete-Layer Finite Elements for Laminated Piezoelectric Plates
,”
Comm. Num. Meth. Eng.
,
10
, pp.
971
981
.
31.
Carrera
,
E.
,
1997
, “
An Improved Reissner-Mindlin Type Model for the Electromechanical Analysis of Multilayered Plates Including Piezo Layers
,”
J. Intell. Mater. Syst. Struct.
,
8
, pp.
232
248
.
32.
Bisegna
,
P.
,
Caruso
,
G.
, and
Maceri
,
F.
,
2001
, “
A Layerwise Reissner-Mindlin-Type Model for the Vibration Analysis and Suppression of Piezoactuated Plates
,”
Comput. Struct.
,
79
, pp.
2309
2319
.
33.
Kim
,
H. S.
,
Xu
,
Z.
, and
Chattopadhya
,
A.
,
2002
, “
Interlaminar Stress Analysis of Shell Structures With Piezoelectric Patch Including Thermal Loading
,”
AIAA J.
,
40
, pp.
2517
2525
.
34.
Cho
,
M.
, and
Parmerter
,
R. R.
,
1993
, “
Efficient Higher Order Composite Plate Theory for General Lamination Configurations
,”
AIAA J.
,
31
, pp.
1299
1306
.
35.
Shu
,
X.
, and
Sun
,
L.
,
1994
, “
An Improved Simple Higher-Order Theory for Laminated Composite Plates
,”
Comput. Struct.
,
50
, pp.
231
236
.
36.
Kapuria
,
S.
,
2001
, “
An Efficient Coupled Theory for Multi-Layered Beams With Embedded Piezoelectric Sensory and Active Layers
,”
Int. J. Solids Struct.
,
38
, pp.
9179
9199
.
37.
Kapuria
,
S.
,
Dumir
,
P. C.
, and
Ahmed
,
A.
,
2003
, “
An Efficient Coupled Layerwise Theory for Dynamic Analysis of Piezoelectric Composite Beams
,”
J. Sound Vib.
,
261
, pp.
927
944
.
38.
Kapuria
,
S.
,
Dumir
,
P. C.
, and
Ahmed
,
A.
,
2003
, “
An Efficient Coupled Layerwise Theory for Static Analysis of Piezoelectric Sandwich Beams
,”
Arch. Appl. Mech.
,
73
, pp.
147
159
.
39.
Whitney
,
J. M.
,
1973
, “
Shear Correction Factors for Orthotropic Laminates Under Static Load
,”
ASME J. Appl. Mech.
,
40
, pp.
302
304
.
40.
Xu
,
K.
,
Noor
,
A. K.
, and
Tang
,
Y. Y.
,
1995
, “
Three-Dimensional Solutions for Coupled Thermoelectroelastic Response of Multilayered Plates
,”
Comput. Methods Appl. Mech. Eng.
,
126
, pp.
355
371
.
41.
Averril
,
R. C.
, and
Yip
,
Y. C.
,
1996
, “
An Efficient Thick Beam Theory and Finite Element Model With Zig-Zag Sublaminate Approximation
,”
AIAA J.
,
34
, pp.
1626
1632
.
42.
Pai
,
P. F.
,
1995
, “
A New Look at Shear Correction Factors and Warping Functions of Anisotropic Laminates
,”
Int. J. Solids Struct.
,
32
, pp.
2295
2313
.
You do not currently have access to this content.