A technique for elastic boundary value problem solutions for defects in solids is developed. The method is based on the introduction of virtual circular dislocation-disclination loops distributed continuously for satisfying the prescribed boundary conditions at free surfaces and interfaces. The set of dislocation-disclination loops which may be used as virtual ones is considered. The elastic fields and energies of the selected dislocation and disclination loops are presented. The method of the virtual circular dislocation-disclination loops is then applied to obtain the elastic fields and energies of a spherical dilatating inclusion in a plate and a half-space, of a prismatic dislocation loop parallel to free surfaces of a plate and a half-space, and the elastic fields of a twist disclination loop coaxial to a cylinder.

1.
Louat
,
N.
,
1962
, “
Solution of Boundary Problems in Plane Strain
,”
Nature (London)
,
196
(
4859
), pp.
1081
1082
.
2.
Marcinkowski, M. J., 1979, Unified Theory of the Mechanical Behavior of Matter, John Wiley and Sons, New York.
3.
Romanov
,
A. E.
, and
Vladimirov
,
V. I.
,
1981
, “
Straight Disclinations Near a Free Surface. I. Stress Fields
,”
Phys. Status Solidi A
,
63
(
1
), pp.
109
118
.
4.
Vladimirov
,
V. I.
,
Kolesnikova
,
A. L.
, and
Romanov
,
A. E.
,
1985
, “
Wedge Disclinations in an Elastic Plate
,”
Phys. Met. Metall.
,
60
(
6
), pp.
58
67
(translated from Russian).
5.
Vladimirov, V. I., Romanov, A. E., and Kolesnikova, A. L., 1984, “Flux Line Near Surface of Superconductor,” Physics and Technology of the Treatment of Metal Surface, Physico-Technical Institute, Leningrad, Russia, pp. 33–38 (in Russian).
6.
Jagannadham
,
K.
, and
Marcinkowski
,
M. J.
,
1980
, “
Surface Dislocation Model of a Dislocation in a Two Phase Medium
,”
J. Mater. Sci.
,
15
(
2
), pp.
709
726
.
7.
Gutkin
,
M. Yu.
, and
Romanov
,
A. E.
,
1991
, “
Straight Edge Dislocation in a Thin Two-Phase Plate. I. Elastic Stress Fields
,”
Phys. Status Solidi A
,
125
(
1
), pp.
107
125
.
8.
Belov
,
A. J.
,
Chamrov
,
V. A.
,
Indenbom
,
V. L.
, and
Lothe
,
J.
,
1983
, “
Elastic Fields of Dislocations Piercing the Interface of an Anisotropic Bicrystal
,”
Phys. Status Solidi B
,
119
(
2
), pp.
565
578
.
9.
Kolesnikova, A. L., and Romanov, A. E., 1986, “Circular Dislocation-Disclination Loops and Their Application to Boundary Problem Solution in the Theory of Defects,” preprint of Physico-Technical Institute, No. 1019, Leningrad, Russia (in Russian).
10.
Kolesnikova
,
A. L.
, and
Romanov
,
A. E.
,
1987
, “
Edge Dislocation Perpendicular to the Surface of a Plate
,”
Sov. Tech. Phys. Lett.
,
13
(
6
), pp.
272
274
(translated from Russian).
11.
Kolesnikova
,
A. L.
, and
Romanov
,
A. E.
,
2003
, “
Dislocation and Disclination Loops in the Virtual-Defect Method
,”
Phys. Solid State
,
45
(
9
), pp.
1706
1728
(translated from Russian).
12.
Louat
,
N.
, and
Sadananda
,
K.
,
1991
, “
Some Consequences of the Elastic Interaction of Particles and Free Surfaces
,”
Philos. Mag. A
,
64
(
1
), pp.
213
221
.
13.
Salamon
,
N. J.
, and
Dundurs
,
J.
,
1971
, “
Dislocation Loops in Inhomogeneous Materials
,”
J. Elast.
,
1
(
2
), pp.
153
160
.
14.
Dundurs
,
J.
, and
Salamon
,
N. J.
,
1972
, “
Circular Prismatic Dislocation Loop in Two-Phase Material
,”
Phys. Status Solidi B
,
50
(
1
), pp.
125
133
.
15.
Salamon
,
N. J.
, and
Comninou
,
M.
,
1979
, “
The Circular Prismatic Dislocation Loop in an Interface
,”
Philos. Mag. A
,
39
(
5
), pp.
685
691
.
16.
Kuo
,
H. H.
, and
Mura
,
T.
,
1972
, “
Circular Disclinations and Interface Effect
,”
J. Appl. Phys.
,
43
(
10
), pp.
3936
3943
.
17.
Kuo
,
H. H.
,
Mura
,
T.
, and
Dundurs
,
J.
,
1973
, “
Moving Circular Twist Disclination Loop in Inhomogeneous and Two-Phase Materials
,”
Int. J. Eng. Sci.
,
11
(
1
), pp.
193
201
.
18.
Eason
,
G.
,
Noble
,
B.
, and
Sneddon
,
I. N.
,
1955
, “
On Certan Integrals of Lipschitz-Hankel Type Involving Products of Bessel Functions
,”
Philos. Trans. R. Soc. London, Ser. A
,
247
(
935
), pp.
529
551
.
19.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, Boston.
20.
Ufliand, Ya. S., 1967, Integral Transformations in Problems of Theory of Elasticity, Nauka, Leningrad, Russia (in Russian).
21.
Theodosiu, C., 1982, Elastic Models of Crystal Defects, Springer-Verlag, Berlin.
22.
Seo
,
K.
, and
Mura
,
T.
,
1979
, “
Elastic Field in a Half-Space due to Ellipsoidal Inclusions With Uniform Dilatation Eigenstrains
,”
ASME J. Appl. Mech.
,
46
(
3
), pp.
568
572
.
You do not currently have access to this content.