This note derives an analytical relationship for an inextensible network when it buckles. According to the relationship, the applied compressive force can be determined according to the maximum absolute values of deflection and angle of deflection in the network’s wrinkles.

1.
Cerda
,
E.
, and
Mahadevan
,
L.
,
2003
, “
Geometry and Physics of Wrinkling
,”
Phys. Rev. Lett.
,
90
,
074302
074302
.
2.
Cerda
,
E.
,
Ravi-Chandar
,
K.
, and
Mahadevan
,
L.
,
2002
, “
Thin Films: Wrinkling of an Elastic Sheet Under Tension
,”
Nature (London)
,
419
, pp.
579
580
.
3.
Simmonds
,
J. G.
,
1985
, “
The Strain Energy Density of Rubber-Like Shells
,”
Int. J. Solids Struct.
,
21
, pp.
67
77
.
4.
Wang
,
W.-B.
, and
Pipkin
,
A. C.
,
1986
, “
Inextensible Networks With Bending Stiffness
,”
Q. J. Mech. Appl. Math.
,
39
, pp.
343
359
.
5.
Wang
,
W.-B.
, and
Pipkin
,
A. C.
,
1986
, “
Plane Deformations of Nets With Bending Stiffness
,”
Acta Mech.
,
65
, pp.
263
279
.
6.
Hilgers
,
M. G.
, and
Pipkin
,
A. C.
,
1992
, “
Elastic Sheets With Bending Stiffness
,”
Q. J. Mech. Appl. Math.
,
45
, pp.
57
75
.
7.
Hilgers
,
M. G.
, and
Pipkin
,
A. C.
,
1992
, “
Bending Energy of Highly Elastic Membranes
,”
Q. Appl. Math.
,
50
, pp.
389
400
.
8.
Hilgers
,
M. G.
, and
Pipkin
,
A. C.
,
1993
, “
Energy Minimizing Deformations of Elastic Sheets With Bending Stiffness
,”
J. Elast.
,
31
, pp.
125
139
.
9.
Hilgers
,
M. G.
, and
Pipkin
,
A. C.
,
1996
, “
Bending Energy of Highly Elastic Membranes II
,”
Q. Appl. Math.
,
54
, pp.
307
316
.
10.
Hilgers
,
M. G.
, and
Pipkin
,
A. C.
,
1997
, “
Plane Infinitesimal Waves in Elastic Sheets With Bending Stiffness
,”
Math. Mech. Solids
,
2
, pp.
75
89
.
11.
Luo, C., and Steigmann, D. J., 2001, “Bending and Twisting Effects in the Three-Dimensional Finite Deformations of an Inextensible Network,” Advances in the Mechanics of Plates and Shells, Kluwer Academic Publishers, Boston, pp. 213–228.
12.
Synge, J. L., and Griffith, B. A., 1949, Principles of Mechanics, Second Ed., McGraw-Hill, New York, pp. 370–372.
13.
Timoshenko, S., 1936, Theory of Elastic Stability, First Ed., McGraw-Hill, New York, pp. 69–75.
You do not currently have access to this content.