The two-dimensional thermoelastic contact problem of an anisotropic half-space indented by a heated rigid flat punch is studied using the extended version of Stroh’s formalism. Two cases, where the contact interface is nonslip and frictionless, have been considered. In the first case, the contact is perfect throughout the punch face. In the second case, separation is assumed to occur at the edges of the punch.
Issue Section:
Technical Papers
1.
Abramov
, B. M.
, 1937
, “The Problem of Contact of an Elastic Infinite Half-Plane With an Absolutely Rigid Rough Foundation
,” C. R. (Dokl.) de l’Acad. Sci. URSS
, 17
, pp. 173
–178
.2.
Muskhelishvili, N. I., 1954, Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff, Groningen, The Netherlands.
3.
Barber
, J. R.
, 1973
, “Indentation of the Semi-Infinite Elastic Solid by a Hot Sphere
,” Int. J. Mech. Sci.
, 15
, pp. 813
–819
.4.
Barber
, J. R.
, 1978
, “Contact Problems Involving a Cooled Punch
,” J. Elast.
, 8
, pp. 409
–423
.5.
Barber
, J. R.
, 1982
, “Indentation of an Elastic Half-Space by a Cooled Flat Punch
,” Q. J. Mech. Appl. Math.
, 35
, pp. 141
–154
.6.
Barber
, J. R.
, 1976
, “The Effect of Heat Flow on the Contact Area Between a Continuous Rigid Punch and a Frictionless Elastic Half-Space
,” Z. Angew. Math. Mech.
, 27
, pp. 439
–445
.7.
Comninou, M., Dundurs, J., and Barber, J. R., 1980, “Planar Hertz Contact With Heat Conduction,” Solid Contact and Lubrication, H. S. Cheng and L. M. Keer, eds., ASME, New York.
8.
Comninou
, M.
, Barber
, J. R.
, and Dundurs
, J.
, 1981
, “Heat Conduction Through a Flat Punch
,” ASME J. Appl. Mech.
, 48
, pp. 871
–875
.9.
Clements
, D. L.
, 1973
, “Thermal Stress in an Anisotropic Elastic Half-Space
,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, 24
, pp. 332
–337
.10.
Clements
, D. L.
, and Toy
, G. D.
, 1976
, “Two Contact Problems in Anisotropic Thermoelasticity
,” J. Elast.
, 6
, pp. 137
–147
.11.
Chao
, C. K.
, Wu
, S. P.
, and Gao
, B.
, 1999
, “Thermoelastic Contact Between a Flat Punch and an Anisotropic Half-Space
,” ASME J. Appl. Mech.
, 66
, pp. 548
–552
.12.
Stroh
, A. N.
, 1958
, “Dislocations and Cracks in Anistropic Elasticity
,” Philos. Mag.
, 3
, pp. 625
–646
.13.
Wu
, C. H.
, 1984
, “Plane Anisotropic Thermoelasticity
,” ASME J. Appl. Mech.
, 51
, pp. 724
–726
.14.
Hwu
, C.
, 1990
, “Thermal Stresses in an Anisotropic Plate Distributed by an Insulated Elliptic Hole or Crack
,” ASME J. Appl. Mech.
, 57
, pp. 916
–922
.15.
Barnett
, D. M.
, and Lothe
, J.
, 1973
, “Synthesis of the Sextic and the Integral Formalism for Dislocations, Green’s Function and Surface Waves in Anisotropic Elastic Solids
,” Phys. Norv.
, 7
, pp. 13
–19
.16.
Clements, D. L., 1981, Boundary Value Problems Governed by Second Order Elliptic Systems, Pitman, London.
17.
Fan
, H.
, and Keer
, L. M.
, 1994
, “Two-Dimensional Contact on an Anisotropic Elastic Half-Space
,” ASME J. Appl. Mech.
, 61
, pp. 250
–255
.18.
Ting, T. C. T., 1996, Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York.
19.
Ting
, T. C. T.
, 1986
, “Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites
,” Int. J. Solids Struct.
, 22
, pp. 965
–983
.20.
Erdogan
, F.
, and Gupta
, G. D.
, 1972
, “On the Numerical Solution of Singular Integral Equations
,” Q. Appl. Math.
, 27
, pp. 525
–534
.21.
Muskhelishvili, N. I., 1953, Singular Integral Equations, Noordhoff, Groningen, The Netherlands.
22.
Estrada, R., and Kanwal, R. P., 2000, Singular Integral Equations, Birkhauser, Boston.
23.
Dongye
, C.
, and Ting
, T. C. T.
, 1989
, “Explicit Expressions of Barnett-Lothe Tensors and Their Associated Tensors for Orthotropic Materials
,” Q. Appl. Math.
, 47
, pp. 723
–734
.24.
Nowacki, W., 1962, Thermoelasticity, Addison-Wesley, Reading, MA.
25.
Onsager
, L.
, 1931
, “Reciprocal Relations in Irreversible Processes. I
,” Phys. Rev.
, 37
, pp. 405
–426
.26.
Suo
, Z.
, 1990
, “Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media
,” Proc. R. Soc. London, Ser. A
, 427
, pp. 331
–358
.Copyright © 2004
by ASME
You do not currently have access to this content.