We study an undamped, simply supported, Euler-Bernoulli beam given an instantaneous impulse at a point G, far from its ends. The standard modal solution obscures interesting mathematical features of the initial response, which are studied here using dimensional analysis, an averaging procedure of Zener, a similarity solution for an infinite beam, asymptotics, heuristics, and numerics. Results obtained include short-time asymptotic estimates for various dynamic quantities, as well as a numerical demonstration of fractal behavior in the response. The leading order displacement of G is proportional to t. The first correction involves small amplitudes and fast oscillations: something like t3/2cost1. The initial displacement of points away from G is something like tcost1. For small t, the deformed shape at points x far from G is oscillatory with decreasing amplitude, something like x2cosx2. The impulse at G does not cause impulsive support reactions, but support forces immediately afterwards have large amplitudes and fast oscillations that depend on inner details of the impulse: for an impulse applied over a time period ε, the ensuing support forces are of Oε1/2. Finally, the displacement of G as a function of time shows structure at all scales, and is nondifferentiable at infinitely many points.

1.
Clough, R. W., and Penzien, J., 1975, Dynamics of Structures, McGraw-Hill, New York.
2.
Lai
,
S.
, and
Wu
,
Y.
,
2003
, “
The Asymptotic Solution of the Cauchy Problem for a Generalized Boussinesq Equation
,”
Discrete Contin. Dyn. Syst., Ser. B
,
3
(
3
), pp.
401
408
.
3.
Garcia
,
E.
, and
Inman
,
D. J.
,
1991
, “
Modeling of the Slewing Control of a Flexible Structure
,”
J. Guid. Control Dyn.
,
14
(
4
), pp.
736
742
.
4.
Yigit
,
A. S.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
,
1990
, “
Dynamics of a Radially Rotating Beam With Impact, Part I: Theoretical and Computational Model
,”
ASME J. Vibr. Acoust.
,
112
, pp.
65
70
.
5.
Yigit
,
A. S.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
,
1990
, “
Dynamics of a Radially Rotating Beam With Impact, Part II: Experimental and Simulation Results
,”
ASME J. Vibr. Acoust.
,
112
, pp.
71
77
.
6.
Chan
,
K.-T.
,
Wang
,
X.-Q.
, and
Leung
,
T.-P.
,
1998
, “
Free Vibrations of Beams With Two Sections of Distributed Mass
,”
ASME J. Vibr. Acoust.
,
120
, pp.
944
948
.
7.
Yasuda
,
K.
, and
Kamiya
,
K.
,
1999
, “
Experimental Identification Technique of Nonlinear Beams in Time Domain
,”
Nonlinear Dyn.
,
18
, pp.
185
202
.
8.
Gu¨rgo¨ze
,
M.
,
1999
, “
Alternative Formulations of the Characteristic Equation of a Bernoulli-Euler Beam to Which Several Viscously Damped Spring-Mass Systems are Attached In-Span
,”
J. Sound Vib.
,
223
(
4
), pp.
666
677
.
9.
Milford
,
R. I.
, and
Asokanthan
,
S. F.
,
1999
, “
Configuration Dependent Eigenfrequencies for a Two-Link Flexible Manipulator: Experimental Verification
,”
J. Sound Vib.
,
222
(
2
), pp.
191
207
.
10.
Huang
,
J.-S.
,
Fung
,
R.-F.
, and
Tseng
,
C. R.
,
1999
, “
Dynamic Stability of a Cantilever Beam Attached to a Translational/Rotational Base
,”
J. Sound Vib.
,
224
(
2
), pp.
221
242
.
11.
Coskun
,
I.
, and
Engin
,
H.
,
1999
, “
Non-Linear Vibrations of a Beam on an Elastic Foundation
,”
J. Sound Vib.
,
223
(
3
), pp.
335
354
.
12.
Manevitch
,
L. I.
, and
Oshmyan
,
V. G.
,
1999
, “
An Asymptotic Study of the Linear Vibrations of a Stretched Beam With Concentrated Masses and Discrete Elastic Supports
,”
J. Sound Vib.
,
223
(
5
), pp.
679
691
.
13.
Zibdeh
,
H. S.
, and
Zuma
,
H. S.
,
1999
, “
Dynamic Response of a Rotating Beam Subjected to a Random Moving Load
,”
J. Sound Vib.
,
223
(
5
), pp.
741
758
.
14.
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
1999
, “
Linear Dynamics of Curved Tensioned Elastic Beams
,”
J. Sound Vib.
,
228
(
4
), pp.
923
930
.
15.
Lakshmi Narayana
,
K.
, and
Jebaraj
,
C.
,
1999
, “
Sensitivity Analysis of Local/Global Modal Parameters for Identification of a Crack in a Beam
,”
J. Sound Vib.
,
228
(
5
), pp.
977
994
.
16.
Tomasel
,
F. G.
,
Larrondo
,
H. A.
, and
Laura
,
P. A. A.
,
1999
, “
Detection of Cracks in Cantilever Beams: Experimental Set-Up Using Optical Techniques and Theoretical Modelling
,”
J. Sound Vib.
,
228
(
5
), pp.
1195
1204
.
17.
Diken
,
H.
,
2000
, “
Vibration Control of a Rotating Euler-Bernoulli Beam
,”
J. Sound Vib.
,
232
(
3
), pp.
541
551
.
18.
Abu-Hilal
,
M.
, and
Mohsen
,
M.
,
2000
, “
Vibrations of Beams With General Boundary Conditions due to a Moving Harmonic Load
,”
J. Sound Vib.
,
232
(
4
), pp.
703
717
.
19.
Boertjens
,
G. J.
, and
van Horssen
,
W. T.
,
2000
, “
On Interactions of Oscillation Modes for a Weakly Nonlinear Undamped Elastic Beam With an External Force
,”
J. Sound Vib.
,
235
(
2
), pp.
201
217
.
20.
Bovsunovsky
,
A. P.
, and
Matveev
,
V. V.
,
2000
, “
Analytical Approach to the Determination of Dynamic Characteristics of a Beam With a Closing Crack
,”
J. Sound Vib.
,
235
(
3
), pp.
415
434
.
21.
Chakraborty
,
G.
, and
Mallik
,
A. K.
,
2000
, “
Wave Propagation in and Vibration of a Travelling Beam With and Without Non-Linear Effects, Part I: Free Vibration
,”
J. Sound Vib.
,
236
(
2
), pp.
277
290
.
22.
Chakraborty
,
G.
, and
Mallik
,
A. K.
,
2000
, “
Wave Propagation in and Vibration of a Travelling Beam With and Without Non-Linear Effects, Part II: Forced Vibration
,”
J. Sound Vib.
,
236
(
2
), pp.
291
305
.
23.
Coskun
,
I.
,
2000
, “
Non-Linear Vibrations of a Beam Resting on a Tensionless Winkler Foundation
,”
J. Sound Vib.
,
236
(
3
), pp.
401
411
.
24.
Murphy
,
K. D.
, and
Zhang
,
Y.
,
2000
, “
Vibration and Stability of a Cracked Translating Beam
,”
J. Sound Vib.
,
237
(
2
), pp.
319
335
.
25.
Cho
,
D. S.
, and
Lee
,
W. K.
,
2000
, “
Modal Interactions of a Randomly Excited Hinged-Clamped Beam
,”
J. Sound Vib.
,
237
(
3
), pp.
377
393
.
26.
Li
,
W. L.
,
2000
, “
Free Vibrations of Beams With General Boundary Conditions
,”
J. Sound Vib.
,
237
(
4
), pp.
709
725
.
27.
Gu
,
R. J.
, and
Shillor
,
M.
,
2001
, “
Thermal and Wear Analysis of an Elastic Beam in Sliding Contact
,”
Int. J. Solids Struct.
,
38
, pp.
2323
2333
.
28.
Hui
,
C. Y.
, and
Ruina
,
A.
,
1995
, “
Why K? High Order Singularities and Small Scale Yielding
,”
Int. J. Fract.
,
72
, pp.
97
120
.
29.
Graff, K. F., 1975, Wave Motion in Elastic Solids, Oxford University Press, Oxford, UK.
30.
Langhaar, H. L., 1951, Dimensional Analysis and Theory of Models, John Wiley & Sons (reprinted in 1987 by the Robert E. Krieger Publishing Company, Malabar, FL).
31.
Zener
,
C.
,
1941
, “
The Intrinsic Inelasticity of Large Plates
,”
Phys. Rev.
,
59
, p.
669
669
.
32.
Schwieger
,
H.
,
1970
, “
Central Deflection of a Transversely Struck Beam
,” Exp. Mech., Apr., pp. 166–169.
33.
Neuenschwander
,
E.
,
1978
, “
Riemann’s Example of a Continuous, ‘Nondifferentiable’ Function
,”
The Mathematical Intelligencer
,
1
, pp.
40
44
.
34.
Strogatz, S. H., 1994, Nonlinear Dynamics and Chaos, Addison-Wesley, Reading, MA.
You do not currently have access to this content.