Cylindrical geometries are known to present special problem simulation capabilities in engineering design. (For example, solid and hollow cylinder tests are routinely studied in soil and rock mechanics to gain insights into the geomechanical properties and to assess the stability of boreholes and cylindrical openings in the project design geomedia.) This paper identifies a unified and universal solution to all the three recognized right-cylindrical problem objects in poromechanics. A closed-form solution to the problem of the finite, homogeneous, isotropic, fully saturated, thick-walled hollow cylinder subjected to various loading modes is readily presented and described. The assumed loading modes encompass arbitrary temporal functions of uniformly distributed inner/outer pore pressure, inner/outer confining pressure, inner/outer deviatoric stress, and end axial compaction or extension. The time-dependent response derivations are outlined within the frameworks of the Biot’s theory of linear poroelasticity and facilitated by the governing generalized plane-strain (GPS) principle. The (as presented) solution is shown to converge asymptotically to those of the two essential problem setups in geomechanics: the finite solid cylinder and the borehole core in an infinite medium. As such, a complete/explicit solution to a generalized statement of the Lame´ problem is presented. The solution utilizes a fairly simple loading decomposition scheme which leads to two basic problem forms: a generalized poroelastic axisymmetric problem and a generalized, plane-strain, poroelastic deviatoric problem.

1.
Lame´, G., 1852, Lec¸ons sur la The´orie Mathe´matique de l’E´lasticite´ des Corps Solides, Gautheir-Villars, Paris.
2.
Kirsch
,
G.
,
1898
, “
Die Theorie der Elastizitat und die Bedu¨rfnisse der Festigkeitslehre
,”
Veit. Ver. Deut. Ing.
,
42
, pp.
797
807
.
3.
Love, A. E. H., 1944, A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York.
4.
Muskhelishvili, N. I., 1963, Some Basic Problems of the Mathematical Theory of Elasticity, P. Nordhoof, Gorningen, Holland.
5.
Timoshenko, S., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York.
6.
Saada, A., 1974, Elasticity Theory and Applications, Pergamon Press, New York.
7.
Lekhnitskii, S. G., 1977, Theory of Elasticity of an Anisotropic Body, Mir, Moscow.
8.
Abousleiman
,
Y.
, and
Kanj
,
M.
,
2003
, “
The Generalized Lame´ Problem:—Part II: Applications in Poromechanics
,”
ASME J. Appl. Mech.
,
71
, pp.
180
189
.
9.
Parnes
,
R.
,
1991
, “
The Eccentric Lame´ Problem: An Equivalent Perturbed Domain Solution
,”
Int. J. Solids Struct.
,
27
(
13
), pp.
1605
1621
.
10.
Yiannopoulos
,
A. Ch.
,
1996
, “
A Simplified Solution for Stresses in Thick-Wall Cylinders for Various Loading Conditions
,”
Comput. Struct.
,
60
(
4
), pp.
571
578
.
11.
Zhang
,
X.
, and
Hasebe
,
N.
,
1999
, “
Elasticity Solution for a Radially Nonhomogeneous Hollow Circular Cylinder
,”
ASME J. Appl. Mech.
,
66
(
3
), pp.
589
606
.
12.
Chao
,
C. K.
, and
Tan
,
C. J.
,
2000
, “
On the General Solutions for Annular Problems With a Point Heat Source
,”
ASME J. Appl. Mech.
,
67
(
3
), pp.
511
518
.
13.
Chen
,
T.
,
Chung
,
C.-T.
, and
Lin
,
W.-L.
,
2000
, “
A Revisit of a Cylindrically Anisotropic Tube Subjected to Pressuring, Shearing, Torsion, Extension and a Uniform Temperature Change
,”
Int. J. Solids Struct.
,
37
(
37
), pp.
5143
5159
.
14.
Ting
,
T. C. T.
,
1999
, “
New Solutions to Pressuring, Shearing, Torsion and Extension of a Cylindrically anisotropic Elastic Circular Tube or Bar
,”
Proc. R. Soc. London, Ser. A
,
455
, pp.
3527
3542
.
15.
Chau
,
K. T.
, and
Wei
,
X. X.
,
2000
, “
Finite Solid Circular Cylinders Subjected to Arbitrary Surface Load. Part I—Analytic Solution
,”
Int. J. Solids Struct.
,
37
(
40
), pp.
5707
5732
.
16.
Savage
,
W. Z.
, and
,
W. A.
,
1991
, “
A Model for Hydrostatic Consolidation of Pierre Shale
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
28
(
5
), pp.
345
354
.
17.
Kurashige
,
M.
,
1992
, “
Thermal Stresses of a Fluid-Saturated Poroelastic Hollow-Cylinder
,”
JSME Int. J.
,
35
(
4
), pp.
386
391
.
18.
Rajapakse
,
R. K. N. D.
,
1993
, “
Stress Analysis of Borehole in Poroelastic Medium
,”
J. Eng. Mech.
,
119
(
6
), pp.
1205
1226
.
19.
Sherwood
,
J. D.
, and
Bailey
,
L.
,
1994
, “
Swelling of Shale Around a Cylindrical Wellbore
,”
Proc. R. Soc. London, Ser. A
,
444
, pp.
161
184
.
20.
Wang
,
X.
,
1995
, “
Thermal Shock in a Hollow Cylinder Caused by Rapid Arbitrary Heating
,”
J. Sound Vib.
,
183
(
5
), pp.
899
906
.
21.
Abousleiman
,
Y.
,
Cheng
,
A. H.-D.
,
Jiang
,
C.
, and
Roegiers
,
J.-C.
,
1996
, “
Poroviscoelastic Analysis of Borehole and Cylinder Problems
,”
Acta Mech.
,
119
, pp.
175
219
.
22.
Cui
,
L.
,
Cheng
,
A. H.-D.
, and
Abousleiman
,
Y.
,
1997
, “
Poroelastic Solution for an Inclined Borehole
,”
ASME J. Appl. Mech.
,
64
, pp.
32
38
.
23.
Abousleiman
,
Y.
, and
Cui
,
L.
,
1998
, “
Poroelastic Solutions in Transversely Isotropic Media for Wellbore and Cylinder
,”
Int. J. Solids Struct.
,
35
, pp.
4905
4927
.
24.
Chau
,
K. T.
, and
Choi
,
S. K.
,
1998
, “
Bifurcations of Thick-Walled Hollow Cylinders of Geomaterials Under Axisymmetric Compression
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
22
, pp.
903
919
.
25.
Abousleiman, Y., and Ekbote, S., 1999, “Porothermoelasticity in Transversely Isotropic Porous Materials,” IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Media, Sept., Stuttgart, Germany, pp. 145–152.
26.
Kanj, M. and Abousleiman, Y., 2003, “Porothermoelastic Analyses of Anisotropic Hollow Cylinders,” Proceedings of the 39th U.S. Rock Mechanics Symposium (Soil Rock America 2003), Cambridge, MA, June 23–25, pp. 1211–1218.
27.
Lee
,
S.
,
Wang
,
W. L.
, and
Chen
,
J. R.
,
2000
, “
Diffusion-Induced Stresses in a Hollow Cylinder: Constant Surface Stresses
,”
Mater. Chem. Phys.
,
64
, pp.
123
130
.
28.
Cui
,
L.
, and
Abousleiman
,
Y.
,
2001
, “
Time-Dependent Poromechanical Responses of Saturated Cylinders
,”
J. Eng. Mech.
,
127
(
4
), pp.
391
398
.
29.
Kanj, M. Y., and Abousleiman, Y., 2003, “Porothermomechanics of Anisotropic Hollow Cylinders in Oedometric-Like Setups,” CD-Proceedings of the 16th ASCE Engineering Mechanics Conference, Seattle, WA, July 16–18.
30.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.
31.
Rice
,
J. R.
, and
Cleary
,
M. P.
,
1976
, “
Some Basic Stress-Diffusion Solutions for Fluid Saturated Elastic Porous Media With Compressible Constituents
,”
Rev. Geophys. Space Phys.
,
14
(
2
), pp.
227
241
.
32.
Carslaw, H. S., and Jeager, J. C., 1959, Conduction of Heat in Solids, Second Ed., Oxford University Press, London.
33.
Sinclair
,
G. B.
, and
Meda
,
G.
,
2001
, “
On Some Anomalies in Lame´’s Solutions for Elastic Solids With Holes
,”
ASME J. Appl. Mech.
,
68
, pp.
132
134
.
34.
Kanj
,
M.
,
Abousleiman
,
Y.
, and
Ghanem
,
R.
,
2003
, “
Anisotropic Poromechanics Solutions for the Hollow-Cylinder
,”
J. Eng. Mech.
,
129
(
11
), pp.
1277
1287
.