It is shown that, in certain regions of parameter space, travelling wave solutions in rotating shells containing co-rotating inviscid fluid become indeterminate. This may render the determination of the flutter speed impossible, or the solution nonphysical.
Issue Section:
Brief Notes
1.
Lai
, Y.-C.
, and Chow
, C.-Y.
, 1973
, “Stability of a Rotating Thin Elastic Tube Containing a Fluid Flow
,” Zeitschrift fu¨r angewande Mathematik und Mechanik
, 53
, pp. 511
–517
.2.
Srinivasan
, A. V.
, 1971
, “Flutter Analysis of Rotating Cylindrical Shells Immersed in a Circular Helical Flowfield of Air
,” AIAA J.
, 9
, pp. 394
–400
.3.
Dowell
, E. H.
, Srinivasan
, A. V.
, McLean
, J. D.
, and Ambrose
, J.
, 1974
, “Aeroelastic Stability of Cylindrical Shells Subjected to a Rotating Flow
,” AIAA J.
, 12
, pp. 1644
–1651
.1.
Chen
, T. L. C.
, and Bert
, C. W.
, 1977
, “Dynamic Stability of Isotropic or Composite-Material Cylindrical Shells Containing Swirling Fluid Flow
,” ASME J. Appl. Mech.
, 44
, pp. 112
–116
; 2.
44
, p. 513
513
.1.
Paı¨doussis, M. P., 2003, Fluid-Structure Interactions: Slender Structures and Axial Flow, 2, Elsevier, Oxford.
Copyright © 2004
by ASME
You do not currently have access to this content.