Abstract

A softening hyperelastic continuum model is proposed for analysis of brittle fracture. Isotropic material is characterized by two standard parameters—shear and bulk modulus—and an additional parameter of the volumetric separation work. The model can be considered as a volumetric generalization of the concept of the cohesive surface. The meaning of the proposed constitutive equations is clarified by the examples of simple shear and hydrostatic pressure. It is emphasized that the proposed constitutive model includes only smooth functions and the necessary computational techniques are those of nonlinear elasticity.

1.
Barenblatt
,
G. I.
,
1959
, “
The Formation of Equilibrium Cracks During Brittle Fracture—General Ideas and Hypotheses. Axially Symmetric Cracks
,”
J. Appl. Math. Mech.
,
23
, pp.
622
636
.
2.
Rice
,
J. R.
, and
Wang
,
J. S.
,
1989
, “
Embrittlement of Interfaces by Solute Segregation
,”
Mater. Sci. Eng., A
,
107
, pp.
23
40
.
3.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
, pp.
1377
1397
.
4.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
, pp.
1397
1434
.
5.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
, pp.
525
531
.
6.
de Borst
,
R.
,
2001
, “
Some Recent Issues in Computational Failure Mechanics
,”
Int. J. Numer. Methods Eng.
,
52
, pp.
63
95
.
7.
Belytschko
,
T.
,
Moes
,
N.
,
Usiu
,
S.
, and
Parimi
,
C.
,
2001
, “
Arbitrary Discontinuities in Finite Elements
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
993
1013
.
8.
Gao
,
H.
, and
Klein
,
P.
,
1998
, “
Numerical Simulation of Crack Growth in an Isotropic Solid With Randomized Internal Cohesive Bonds
,”
J. Mech. Phys. Solids
,
46
, pp.
187
218
.
9.
Bazant, Z. P., and Planas, J., 1998, Fracture and Size Effect of Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton, FL.
10.
Gao
,
H.
, and
Ji
,
B.
,
2003
, “
Modeling Fracture of Nanomaterials via a Virtual Internal Bond Method
,”
Eng. Fract. Mech.
,
70
, pp.
1777
1791
.
11.
de Borst, R., and van der Giessen, E., 1998, Material Instabilities in Solids, John Wiley and Sons, Chichister, UK.
12.
Hutchinson
,
J. W.
,
2000
, “
Plasticity at the Micron Scale
,”
Int. J. Solids Struct.
,
37
, pp.
225
238
.
13.
Crisfield, M. A., 1991, 1997, Non-linear Finite Element Analysis of Solids and Structures, Vols. 1, 2, John Wiley and Sons, Chichester, UK.
14.
Riks
,
E.
,
1998
, “
Buckling Analysis of Elastic Structures: A Computational Approach
,”
Adv. Appl. Mech.
,
34
, pp.
1
76
.
15.
Belytschko, T., Liu, W. K., and Moran, B., 2000, Nonlinear Finite Elements for Continua and Structures, John Wiley and Sons, New York.
You do not currently have access to this content.