An analytical model is developed for a functionally graded interfacial zone between two dissimilar elastic solids. Based on the fact that an arbitrary curve can be approached by a continuous broken line, the interfacial zone with material properties varying continuously in an arbitrary manner is modeled as a multilayered medium with the elastic modulus varying linearly in each sublayer and continuous on the interfaces between sublayers. With this new multilayered model, we analyze the problem of a Griffith crack in the interfacial zone. The transfer matrix method and Fourier integral transform technique are used to reduce the mixed boundary-value problem to a Cauchy singular integral equation. The stress intensity factors are calculated. The paper compares the new model to other models and discusses its advantages.

1.
Erdogan
,
F.
,
1995
, “
Fracture-Mechanics of Functionally Graded Materials
,”
Composites Eng.
,
5
, pp.
753
770
.
2.
Jin
,
Z.-H.
, and
Noda
,
N.
,
1994
, “
Crack-tip Singular Fields in Nonhomogeneous Materials
,”
ASME J. Appl. Mech.
,
61
, pp.
738
740
.
3.
Jin
,
Z. H.
, and
Batra
,
R. C.
,
1996
, “
Some Basic Fracture Mechanics Concepts in Functionally Graded Materials
,”
J. Mech. Phys. Solids
,
44
, pp.
1221
1235
.
4.
Delale
,
F.
, and
Erdogan
,
F.
,
1988
, “
On the Mechanical Modeling of the Interfacial Region in Bonded Half-Plane
,”
ASME J. Appl. Mech.
,
55
, pp.
317
324
.
5.
Erdogan
,
F.
,
Kaya
,
A. C.
, and
Joseph
,
P. F.
,
1991
, “
The Mode-III Crack Problem in Bonded Materials With a Nonhomogeneous Interfacial Zone
,”
ASME J. Appl. Mech.
,
58
, pp.
419
427
.
6.
Ozturk
,
M.
, and
Erdogan
,
F.
,
1993
, “
Antiplane Shear Crack Problem in Bonded Materials With a Graded Interfacial Zone
,”
Int. J. Eng. Sci.
,
31
, pp.
1641
1657
.
7.
Ozturk
,
M.
, and
Erdogan
,
F.
,
1995
, “
An Axisymmetrical Crack in Bonded Materials With a Nonhomogeneous Interfacial Zone Under Torsion
,”
ASME J. Appl. Mech.
,
62
, pp.
116
125
.
8.
Ozturk
,
M.
, and
Erdogan
,
F.
,
1996
, “
Axisymmetric Crack Problem in Bonded Materials With a Graded Interfacial Region
,”
Int. J. Solids Struct.
,
33
, pp.
193
219
.
9.
Fildis
,
H.
, and
Yahsi
,
O. S.
,
1996
, “
The Axisymmetric Crack Problem in a Non-Homogeneous Interfacial Region Between Homogeneous Half-Spaces
,”
Int. J. Fract.
,
78
, pp.
139
164
.
10.
Fildis
,
H.
, and
Yahsi
,
O. S.
,
1997
, “
The Mode III Axisymmetric Crack Problem in a Non-Homogeneous Interfacial Region Between Homogeneous Half-Spaces
,”
Int. J. Fract.
,
85
, pp.
35
45
.
11.
Choi
,
H. J.
,
Lee
,
K. Y.
, and
Jin
,
T. E.
,
1998
, “
Collinear Cracks in a Layered Half-Plane With a Graded Nonhomogeneous Interfacial Zone-Part I: Mechanical Response
,”
Int. J. Fract.
,
94
, pp.
103
122
.
12.
Choi
,
H. J.
,
Jin
,
T. E.
, and
Lee
,
K. Y.
,
1998
, “
Collinear Cracks in a Layered Half-Plane With a Graded Nonhomogeneous Interfacial Zone-Part II: Thermal Shock Response
,”
Int. J. Fract.
,
94
, pp.
123
135
.
13.
Shbeeb
,
N. I.
, and
Binienda
,
W. K.
,
1999
, “
Analysis of an Interface Crack for a Functionally Graded Strip Sandwiched Between Two Homogeneous Layers of Finite Thickness
,”
Eng. Fract. Mech.
,
64
, pp.
693
720
.
14.
Shbeeb
,
N. I.
,
Binienda
,
W. K.
, and
Kreider
,
K.
,
2000
, “
Analysis of the Driving Force for a Generally Oriented Crack in a Functionally Graded Strip Sandwiched Between Two Homogeneous Half Planes
,”
Int. J. Fract.
,
104
, pp.
23
50
.
15.
BaBaei
,
R.
, and
Lukasiewicz
,
S. S.
,
1998
, “
Fracture in Functionally Gradient Materials Subjected to the Time-Dependent Anti-Plane Shear Load
,”
Z. Angew. Math. Mech.
,
78
, pp.
383
390
.
16.
Noda
,
N.
, and
Jin
,
Z. H.
,
1993
, “
Thermal Stress Intensity Factors for a Crack in a Strip of a Functionally Gradient Material
,”
Int. J. Solids Struct.
,
30
, pp.
1039
1056
.
17.
Erdogan
,
F.
, and
Wu
,
B. H.
,
1996
, “
Crack Problems in FGM Layers Under Thermal Stresses
,”
J. Therm. Stresses
,
19
, pp.
237
265
.
18.
Paulino
,
G. H.
, and
Jin
,
Z. H.
,
2001
, “
Viscoelastic Functionally Graded Materials Subjected to Antiplane Shear Fracture
,”
ASME J. Appl. Mech.
,
68
, pp.
284
293
.
19.
Craster
,
R. V.
, and
Atkinson
,
C.
,
1994
, “
Mixed Boundary Value Problems in Non-Homogeneous Elastic Materials
,”
Q. J. Math.
,
47
, pp.
183
206
.
20.
Wang
,
X. Y.
,
Wang
,
D.
, and
Zou
,
Z. Z.
,
1996
, “
On the Griffith Crack in a Nonhomogeneous Interlayer of Adjoining Two Different Elastic Materials
,”
Int. J. Fract.
,
79
, pp.
R51–R56
R51–R56
.
21.
Dhaliwal
,
R. S.
,
Saxena
,
H. S.
, and
He
,
W. H.
,
1992
, “
Stress Intensity Factor for the Cylindrical Interface Crack Between Nonhomogeneous Coaxial Finite Elastic Cylinders
,”
Eng. Fract. Mech.
,
43
, pp.
1039
1051
.
22.
Han
,
X. L.
, and
Duo
,
W.
,
1996
, “
The Crack Problem of a Fiber-Matrix Composite With a Nonhomogeneous Interfacial Zone Under Torsional Loading. 1. A Cylindrical Crack in the Interfacial Zone
,”
Eng. Fract. Mech.
,
54
, pp.
63
69
.
23.
Wang
,
B. L.
,
Han
,
J. C.
, and
Du
,
S. Y.
,
1999
, “
Dynamic Response for Functionally Graded Materials With Penny-Shaped Cracks
,”
Acta Mechanica Solida Sin.
,
12
, pp.
106
113
.
24.
Itou
,
S.
, and
Shima
,
Y.
,
1999
, “
Stress Intensity Factors Around a Cylindrical Crack in an Interfacial Zone in Composite Materials
,”
Int. J. Solids Struct.
,
36
, pp.
697
709
.
25.
Ewing, W. M., Jardetzky, W. S., and Press, F., 1957, Elastic Waves in Layered Media, McGraw-Hill, New York.
26.
Gao
,
H.
,
1991
, “
Fracture Analysis of Non-Homogeneous Materials via a Moduli-Perturbation Approach
,”
Int. J. Solids Struct.
,
27
, pp.
1663
1682
.
27.
Erguven
,
M. E.
, and
Gross
,
D.
,
1999
, “
On the Penny-Shaped Crack in Inhomogeneous Elastic Materials Under Normal Extension
,”
Int. J. Solids Struct.
,
36
, pp.
1869
1882
.
28.
Abramowitz, M., and Stegun, I. A., 1965, Handbook of Mathematical Functions, Dover, New York.
29.
Erdogan
,
F.
, and
Gupta
,
G. D.
,
1972
, “
On the Numerical Solution of Singular Integral Equations
,”
Quart. Appl. Math.
,
29
, pp.
525
534
.
30.
Wang
,
Y. S.
, and
Wang
,
D.
,
1996
, “
Scattering of Elastic Waves by a Rigid Cylindrical Inclusion Partially Debonded From its Surrounding Matrix-I. SH Case
,”
Int. J. Solids Struct.
,
33
, pp.
2789
2815
.
31.
Nozaki
,
H.
, and
Shindo
,
Y.
,
1998
, “
Effect of Interface Layers on Elastic Wave Propagation in a Fiber-Reinforced Metal-Matrix Composite
,”
Int. J. Eng. Sci.
,
36
, pp.
383
394
.
You do not currently have access to this content.