This paper deals with noncontributing forces, usually called constraint forces or reaction forces, arising in simple, nonholonomic multibody systems. These forces are related to two kinds of constraints, namely, kinematical constraints—derived from kinematical requirements, and auxiliary constraints, introduced for the purpose of constraint forces determination. Here, the method of “auxiliary generalized speeds” is used to bring into evidence constraint forces related to the two kinds of constraints. It is shown that auxiliary generalized speeds can always be chosen in a way that gives rise to additional equations each having one measure number of a constraint force as an unknown. Motion equations can thus be generated and solved without regard to constraint forces determination; and constraint forces can be determined with no matrix inversion, at a minimal computational cost.

1.
Shabana, A., 1998, Dynamics of Multibody Systems, Cambridge University Press, New York.
2.
Wehage
,
R. A.
, and
Haug
,
E. J.
,
1982
, “
Generalized Coordinates Partitioning for Dimension Reduction Analysis of Constrained Dynamical Systems
,”
ASME J. Mech. Des.
,
104
, pp.
247
255
.
3.
Nikravesh
,
P. E.
, and
Haug
,
E. J.
,
1983
, “
Generalized Coordinate Partitioning for Analysis of Mechanical Systems With Nonholonomic Constraints
,”
ASME J. Mech., Transm., Autom. Des.
,
105
, pp.
379
384
.
4.
Kim
,
S. S.
, and
Vanderploeg
,
M. J.
,
1986
, “
QR Decomposition for State Space Representation of Constrained Mechanical Systems
,”
ASME J. Mech., Transm., Autom. Des.
,
108
, pp.
183
188
.
5.
Kamman
,
J. W.
, and
Huston
,
R. L.
,
1984
, “
Dynamics of Constrained Multibody Dynamics
,”
ASME J. Appl. Mech.
,
51
, pp.
899
903
.
6.
Loduha
,
T. A.
, and
Ravani
,
B.
,
1995
, “
On First-Order Decoupling of Equations of Motion for Constrained Dynamical Systems
,”
ASME J. Appl. Mech.
,
62
, pp.
216
222
.
7.
Singh
,
R. P.
, and
Likins
,
P. W.
,
1985
, “
Singular Value Decomposition for Constrained Dynamical Systems
,”
ASME J. Appl. Mech.
,
52
, pp.
943
948
.
8.
Amirouche
,
F. M. L.
,
Jia
,
T.
, and
Ider
,
S. K.
,
1988
, “
A Recursive Householder Transformation for Complex Dynamical Systems With Constraints
,”
ASME J. Appl. Mech.
,
55
, pp.
729
734
.
9.
Liang
,
C. D.
, and
Lance
,
G. M.
,
1987
, “
A Differentiable Null-Space Method for Constrained Dynamic Analysis
,”
ASME J. Mech., Transm., Autom. Des.
,
109
, pp.
405
411
.
10.
Hemami
,
H.
, and
Weimer
,
F. C.
,
1981
, “
Modelling of Nonholonomic Dynamic Systems With Applications
,”
ASME J. Appl. Mech.
,
48
, pp.
177
182
.
11.
Nikravesh
,
P. E.
,
1990
, “
Systematic Reduction of Multibody Equations of Motion to a Minimal Set
,”
Int. J. Non-Linear Mech.
,
25
(
2/3
), pp.
143
151
.
12.
Schiehlen, W., Ed., 1990, Multibody Systems Handbook, Springer-Verlag, Berlin.
13.
Papastavridis
,
J. G.
,
1988
, “
On the Nonlinear Appell’s Equations and the Determination of Generalized Reaction Forces
,”
Int. J. Eng. Sci.
,
26
(
6
), pp.
609
625
.
14.
Papastavridis
,
J. G.
,
1990
, “
Maggi’s Equations of Motion and the Determination of Constraint Reactions
,”
J. Guid. Control Dyn.
,
13
(
2
), pp.
213
220
.
15.
Udvadia, E. F., and Kalaba, E. R., 1996, Analytical Dynamics: A New Approach, Cambridge University Press, New York.
16.
Kane, T. R., and Levinson, D. A., 1985, Dynamics: Theory and Applications, McGraw-Hill, New York.
17.
Shan
,
D.
, 1973, “Equations of Motion of Systems With Second-Order Nonlinear Nonholonomic Constraints,” PMM, 37(2), pp. 349–354.
18.
Kitzka
,
F.
,
1986
, “
An Example for the Application of a Nonlinear Constraint of Second Order in Particles Mechanics
,”
Z. Angew. Math. Mech.
,
66
(
7
), pp.
312
314
.
19.
Blajer
,
W.
,
1992
, “
A Projection Method Approach to Constrained Dynamic Analysis
,”
ASME J. Appl. Mech.
,
59
, pp.
643
649
.
20.
Whittaker, E. T., 1944, A Treatise on the Analytical Dynamics, Dover, New York.
21.
Pars, L. A., 1979, Treatise on Analytical Dynamics, Ox Bow Press, Woodbridge, CT (reprint from the original 1965 edition).
22.
Gelfand, I. M., and Fomin, S. V., 1963, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ.
23.
Lanczos, C., 1970, The Variational Principles of Mechanics, 4th Ed., Dover, New York.
24.
Djerassi
,
S.
,
1997
, “
Determination of Noncontributing Forces and Noncontributing Impulses in Three-Phase Motions
,”
ASME J. Appl. Mech.
,
64
, pp.
582
589
.
25.
Djerassi
,
S.
, and
Kane
,
T. R.
,
1985
, “
Equations of Motion Governing the Deployment of a Flexible Linkage From a Spacecraft
,”
J. Astronaut. Sci.
,
33
(
4
), pp.
417
428
.
26.
Blajer
,
W.
,
Bestle
,
D.
, and
Schiehlen
,
W.
,
1994
, “
An Orthogonal Complement Matrix Formulation for Constrained Multibody Systems
,”
ASME J. Mech. Des.
,
116
, pp.
423
428
.
27.
Hamel, G., 1949, Theoretische Mechanik, Springer-Verlag, Berlin.
28.
Shan
,
D.
, 1975, “On the Determination of Forces of Constraints Reaction,” PMM, 39(6), pp. 1129–1134.
29.
Kane, T. R., and Levinson, D. A., 1996, Dynamics Online: Theory and Implementation With Autolev, Online Dynamics, Sunnyvale, CA.
30.
Kurdila
,
A.
,
Papastavridis
,
J. G.
, and
Kamat
,
M. P.
,
1990
, “
Role of Maggi’s Equations in Computational Methods for Constrained Multibody Systems
,”
J. Guid. Control Dyn.
,
13
(
1
), pp.
113
120
.
You do not currently have access to this content.