First, this paper presents the concepts of separated J-integrals and separated energy release rates. The path-independent separated J-integrals have the physical significance of energy flows into an interfacial crack tip from adjacent individual material sides or, equivalently, separated energy release rates. Thus, the J-integral and the energy release rate can be evaluated by the sum of the path-independent separated J-integrals. Second, the relations between the separated J-integrals and the stress intensity factors are derived. Third, the component separation method of the J-integral is extended for interfacial crack problems to allow accurate evaluation of the stress intensity factors. Finally, pertinent numerical analyses are carried out to demonstrate the usefulness of the separated J-integrals and the component separation method.

1.
Nishioka
,
T.
, and
Yasin
,
A.
,
1999
, “
The Dynamic J Integral, Separated Dynamic J Integrals and Moving Finite Element Simulation, for Subsonic, Transonic and Supersonic Interfacial Crack Propagation
,”
JSME Int. J., Ser. A
,
42
, pp.
25
39
.
2.
Nishioka
,
T.
, and
Atluri
,
S. N.
,
1983
, “
Path-Independent Integrals, Energy Release Rates, and General Solutions of Near-Tip Fields in Mixed-Mode Dynamic Fracture Mechanics
,”
Eng. Fract. Mech.
,
18
, pp.
1
22
.
3.
Nishioka, T., and Yasin, A., 1999, “Finite Element Simulations of Impact Interfacial Fracture Problems,” Impact Response of Materials and Structures, V. P. W. Shim, S. Tanimura, and C. T. Lim, Eds., Oxford University Press, New York, pp. 426–431.
4.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.
5.
Sun
,
C. T.
, and
Jih
,
C. J.
,
1987
, “
On Strain Energy Release Rates for Interfacial Cracks in Bi-Material Media
,”
Eng. Fract. Mech.
,
28
, pp.
13
20
.
6.
Nishioka
,
T.
,
Murakami
,
R.
, and
Takemoto
,
Y.
,
1990
, “
The Use of the Dynamic J Integral (J) in Finite Element Simulation of Mode I and Mixed-Mode Dynamic Crack Propagation
,”
Int. J. Pressure Vessels Piping
,
44
, pp.
329
352
.
7.
Nishioka
,
T.
,
1994
, “
The State of the Art in Computational Dynamic Fracture Mechanics
,”
JSME Int. J., Ser. A
,
37
, pp.
313
333
.
8.
Nishioka, T., 1998, “On the Dynamic J Integral in Dynamic Fracture Mechanics,” Fracture: A Topical Encyclopedia of Current Knowledge, G. P. Cherepanov, ed., Krieger, Melbourne, FL, pp. 575–617.
9.
Nishioka, T., Hu, Q. H., and Fujimoto, T., 2001, “Numerical Simulations of Dynamic Interfacial Fracture Phenomena,” Proceedings of the 10th International Conference on Fracture, Honolulu, HI, Dec. 3–7, Elsevier, New York.
10.
Yau
,
J. F.
, and
Wang
,
S. S.
,
1984
, “
An Analysis of Interface Cracks Between Dissimilar Isotropic Materials Using Conservation Integrals in Elasticity
,”
Eng. Fract. Mech.
,
20
, pp.
423
432
.
11.
Yuuki
,
R.
, and
Cho
,
S. B.
,
1989
, “
Efficient Boundary Element Analysis of Stress Intensity Factors for Interface Cracks in Dissimilar Materials
,”
Eng. Fract. Mech.
,
34
, pp.
179
188
.
12.
Shih
,
C. F.
, and
Asaro
,
R. J.
,
1988
, “
Elastic-Plastic Analysis of Cracks in Bimaterial Interface: Part I—Small Scale Yielding
,”
ASME J. Appl. Mech.
,
55
, pp.
299
316
.
13.
Malyshev
,
B.
, and
Salganik
,
R.
,
1965
, “
The Strength of Adhesive Joints Using the Theory of Cracks
,”
Int. J. Fract. Mech.
,
1
, pp.
114
119
.
14.
Willis
,
J. R.
,
1971
, “
Fracture Mechanics of Interfacial Cracks
,”
J. Mech. Phys. Solids
,
19
, pp.
353
368
.
15.
Yuuki, et al., 1993, Mechanics of Interface, Baifukan, pp. 103–105 (in Japanese).
16.
Ikeda
,
T.
,
Miyazaki
,
M.
,
Soda
,
T.
, and
Munakata
,
T.
,
1992
, “
Mixed Mode Fracture Criteria of Interface Crack Between Dissimilar Materials
,”
Trans. Jpn. Soc. Mech. Eng.
,
58A
, pp.
2080
2087
.
17.
Yuuki
,
R.
, and
Cho
,
S. B.
,
1989
, “
Efficient Boundary Element Analysis of Stress Intensity Factors for Interface Cracks in Dissimilar Materials
,”
Eng. Fract. Mech.
,
34
, pp.
179
188
.
18.
Richard
,
H. A.
, and
Benitz
,
K.
,
1983
, “
A Loading Device for the Creation of Mixed Mode in Fracture Mechanics
,”
Int. J. Fract.
,
22
, pp.
R55–R59
R55–R59
.
19.
Kishimoto
,
K.
,
Fukano
,
H.
,
Yoshida
,
T.
, and
Aoki
,
S.
,
1990
, “
Elastic-Plastic Fracture Behavior of an Aluminum Alloy Under Mixed Mode Conditions
,”
Trans. Jpn. Soc. Mech. Eng.
,
56A
, pp.
957
965
.
20.
Fujimoto
,
T.
, and
Tomita
,
Y.
,
1998
, “
Modeling and Simulation of Response of Particulate-Reinforced Composite Materials Under a Plane Strain Condition
,”
Trans. Jpn. Soc. Mech. Eng.
,
64A
, pp.
2694
2700
.
You do not currently have access to this content.